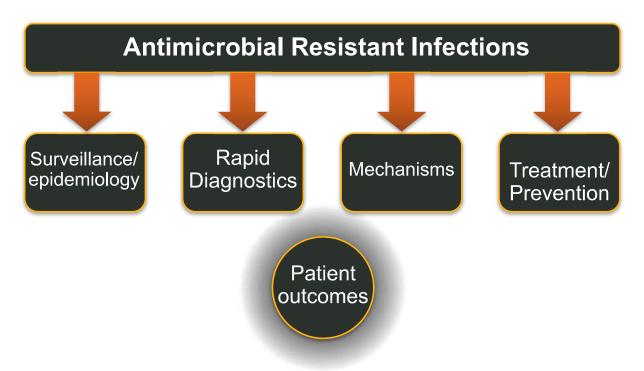
ADVENTURER EXPLORER ADVENTURER TRAILBLAZER REBEL PIONEER CREATOR EXPLORER REBEL PIONE

PIONEER CREATOR EXPLORER DEFENDER TRAILBLAZER REBEL PIONEER EXPLORER ADVENTURER TRAILBLAZER REBEL EXPLORER PIONEER DEFENDER TRAILBLAZER CREATOR

New Antimicrobials for the Treatment of Resistant Gram-Positive and Gram-Negative Infections

George G. Zhanel (Microbiologist/Pharmacologist)

Professor: Department of Medical Microbiology/Infectious Diseases


Max Rady College of Medicine, University of Manitoba and

Director: Canadian Antimicrobial Resistance Alliance (CARA),
Max Rady College of Medicine, University of
Manitoba, Winnipeg, Canada

Page 1 of 54 2017-07-23 16:03

Canadian Antimicrobial Resistance Alliance (CARA)

www.can-r.ca

Page 2 of 54 2017-07-23 16:03

Objectives:

1. Understand current treatments of MRSA, VRE and MDR Gram-negative bacilli

2. Review new/investigational agents for the resistant Gram-negative bacilli

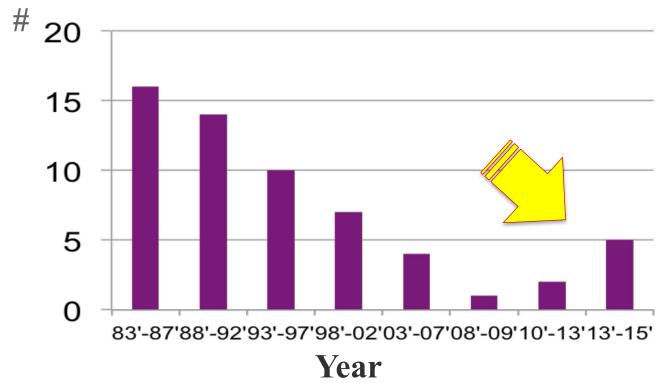
3. Review new/investigational agents for MRSA and VRE infections

Page 3 of 54 2017-07-23 16:03

Potential Solutions to Infections Caused By Resistant Superbugs

(Adapted from WHO 2014; UK 2014 and US 2015)

- Surveillance of resistant pathogens (www.can-r.ca)
- Infection control (wash those hands!)
- Rapid diagnostics
- Treatment guidelines
- Antimicrobial stewardship
- New antimicrobials/new therapies



- Probiotics/Bacteriotherapy
- Vaccination
- Bacteriophages (lytic)

Iredell et al. BMJ 2015

Page 4 of 54 2017-07-23 16:03

Some New Antimicrobials Are Coming

IDSA. http://www.idsociety.org/BBND/. Deak et al. Ann Intern Med 2016;165:363-372.

Page 5 of 54 2017-07-23 16:03

New Antimicrobials

Recently marketed in Canada/US,

- New/old antimicrobials

- Older antimicrobials
 - Optimizing pharmacodynamics
 - Combinations

Page 6 of 54 2017-07-23 16:03

CANWARD 2007- Present

George Zhanel, Heather Adam, Mel Baxter, Melissa McCracken, Laura Mataseje, Michael R Mulvey, Matt Gilmour, Karen Wake, Barbara Weshnoweski, Ravi Vashisht, Sali Biju, Nancy Laing, James Karlowsky, Kim Nichol, Andrew Denisuik, Alyssa Golden, Philippe Lagacé-Wiens, Andrew Walkty, Frank Schweizer, Jack Johnson, the Canadian Antimicrobial Resistance Alliance (CARA) and Daryl J Hoban

University of Manitoba, Health Sciences Centre,
National Microbiology Lab, Winnipeg, Canada and International Health Management
Associates (IHMA), Chicago, USA

Supplements in CJIDMM 2009, DMID 2011 and JAC 2013. www.can-r.ca

7/39

Page 7 of 54 2017-07-23 16:03

Bacteriology of Top 10 Organisms in Canada CANWARD 2007-2015 (BLOOD n=17,421)

	Ranking	Organism	% of Total
	1.	Escherichia coli	23.0
	2.	Staphylococcus aureus, MSSA	13.9
	3.	Klebsiella pneumoniae	7.4
	4.	Enterococcus spp.	6.5
WUL	5.	Streptococcus pneumoniae	4.9
	6.	Pseudomonas aeruginosa	3.9
	7.	Staphylococcus aureus, MRSA	3.8
UUL	8.	Candida albicans	2.5
	9.	Enterobacter cloacae	2.4
	10.	Streptococcus agalactiae	1.9
	Total		70.3

Zhanel et al. ICAAC/ICC 2015. Zhanel et al. JAC 2013.

CNS / S. epidermidis 7.6%

CANADIAN ANTIMICROBIAL CARAMETER RESISTANCE ALLIANCE

Page 8 of 54 2017-07-23 16:03

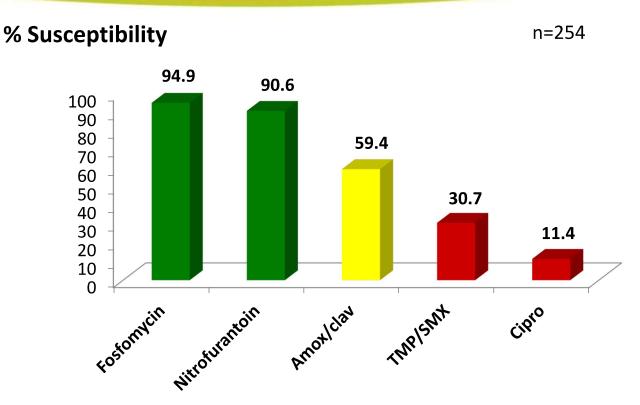
NEW/Investigational Agents vs. MDR Gram-negative Pathogens

- Ceftolozane/tazobactam
- Ceftobiprole 🛑 🚾
- Ceftazidime-avibactam
- Ceftaroline-avibactam
- Imipenem/relebactam
- Meropenem/vaborbactam
- Eravacycline/Omadacycline
- Plazomicin
- Aztreonam-avibactam
- Delafloxacin
- Refamulin
- Oral/IV Fosfomycin
- Cefiderocol

ICAAC/ICC 2015, ASM Microbe 2016.

Deak et al. Ann Intern Med 2016;165:363-372.

Butler, Blaskovich and Cooper. J Antibiot 2017;70:3-24.


Page 9 of 54 2017-07-23 16:03

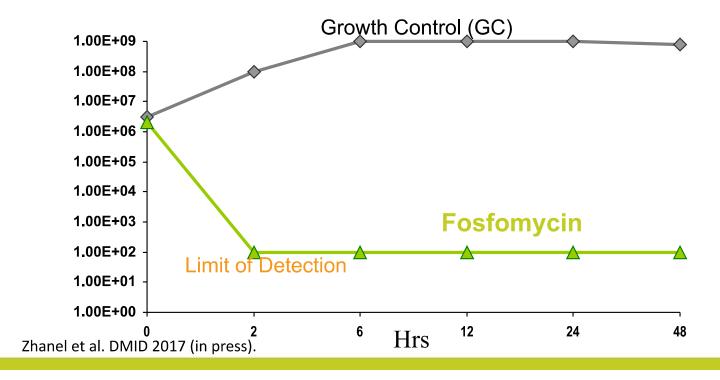
NEW/Investigational Agents vs. MDR Gram-negative Pathogens

Oral Fosfomycin

Page 10 of 54 2017-07-23 16:03

Activity of Antimicrobials vs <u>ESBL</u> *E. coli* Causing UTIs (Canada 2007-2013)

Karlowsky, Adam, Denisuik, Lagace-Wiens, Baxter and Zhanel. AAC 2014;58:1252-1256.


Page 11 of 54 2017-07-23 16:03

12

Fosfomycin Kills ESBL E. coli

Simulating 3g PO, fCmax 4000 μ g/mL, $t_{1/2}$ 6 hrs)

Strain #87164 CTX-M-15, TEM-1; Fosfomycin MIC 1 μg/mL

Page 12 of 54 2017-07-23 16:03

NEW/Investigational Agents vs. MDR Gram-negative Pathogens

Ceftolozane-Tazobactam

Page 13 of 54 2017-07-23 16:03

Ceftolozane-Tazobactam

- Antipseudomonal cephalosporin plus beta-lactamase inhibitor
- Spectrum of activity: Gram-negatives, including MDR Pseudomonas aeruginosa and ESBL-producing strains
- FDA approval in December 2014 (Canada 2015)
 - Complicated urinary tract infections, including pyelonephritis
 - Complicated intraabdominal infections (plus metronidazole)
 - IV dose: 1.5 g (1 g ceftolozane; 0.5 g tazobactam) q8h (1-h infusion)

Zhanel GG, et al. *Drugs.* 2014;74:31-51. Liscio JL, et al. *Int J Antimicrob Agents.* 2015;46:266-271.

Page 14 of 54 2017-07-23 16:03

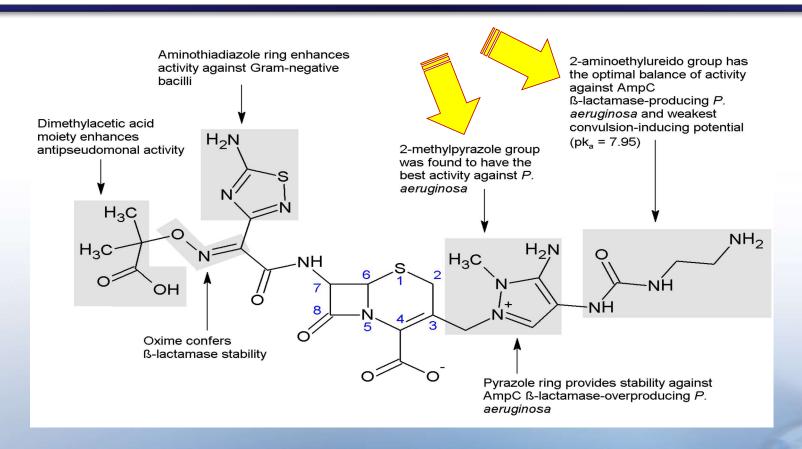
Ceftolozane/tazobactam Activity

 $(CANWARD 2011-2014, n=10,272, MIC_{90})$

Organism (#)	Ceftol/tazo	Imipenem
E. coli (1322)	0.25	0.25
<i>E. coli</i> ESBL (218)	1	0.25
P. aeruginosa (322)	1	16
K. pneumoniae 809	0.5	0.5
E. cloacae 344	8	0.5
S. marcescens 209	1	1
P. mirabilis 187	0.5	4
E. aerogenes 93	2	1
A. baumannii 52	2	0.5

Zhanel et al. Drugs. 2014;74:31-51.; Zhanel et al. ICAAC/ICC 2015.

Page 15 of 54 2017-07-23 16:03


Clinical Efficacy of Ceftolozane/Tazobactam in the Treatment of ESBL cUTI and cIAI

97.4% clinical cure rate

Popejoy et al. JAC 2017;72(1):268-272.

Page 16 of 54 2017-07-23 16:03

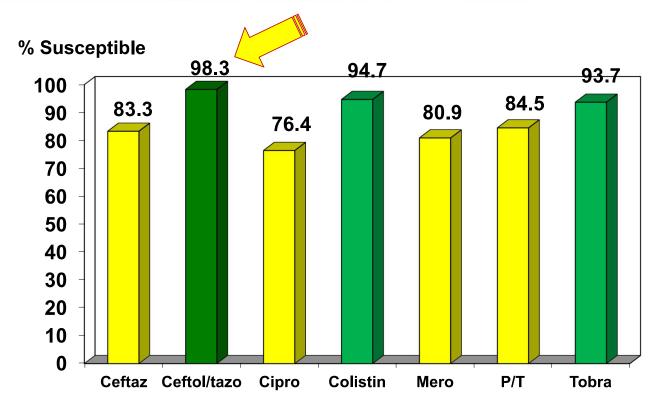
Ceftolozane Structure

Zhanel et al. Drugs 2014:Jan;74(1):31-51.

Page 17 of 54 2017-07-23 16:03

Ceftolozane-Tazobactam: Activity Against *P. aeruginosa*

- In vitro activity against P. aeruginosa that had:
 - Chromosomal AmpC or
 - Loss of outer membrane porin (OprD) or
 - Up-regulation of efflux pumps (MexXY, MexAB)
- Not active against bacteria producing metallo-β-lactamases

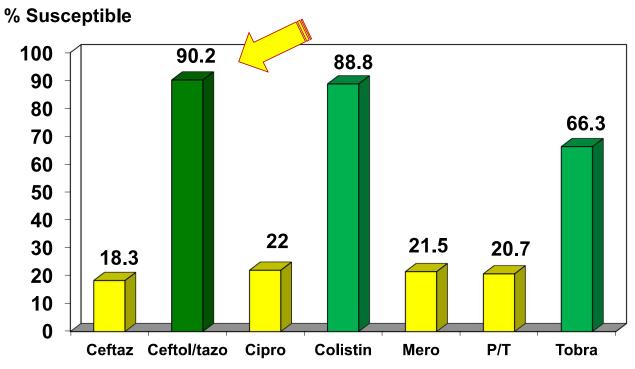

Current FDA susceptibility interpretive criteria:

	Minimum Inhibitory Concentrations (μg/mL)		
Pathogen	Susceptible (S)	Intermediate (I)	Resistant (R)
Pseudomonas aeruginosa	≤4 / 4*	8 / 4*	≥16 / 4*

Cabot et al. *Antimicrob Agents Chemother.* 2014;58:6:3091-3099. Takeda S, et al. *Antimicrob Agents Chemother.* 2007;51:826-830. Castanheira M, et al. *Antimicrob Agents Chemother.* 2014;58:6844-6850.

Page 18 of 54 2017-07-23 16:03

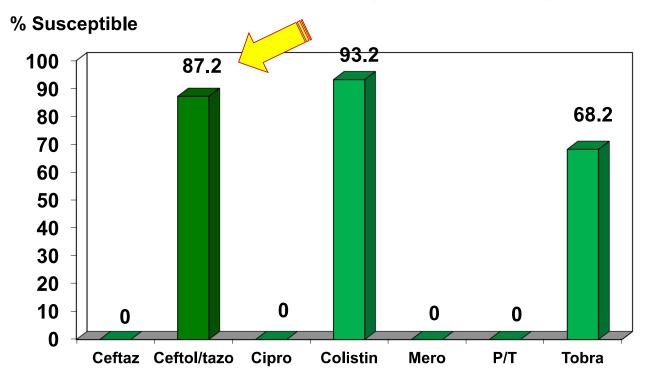
Antibiotic Susceptibility of *P. aeruginosa* (CANWARD 2007-2015) [n=3036]


Zhanel et al. ASA 2017 (P033). Walkty et al. AAC 2013;57:5707-5709.

Page 19 of 54 2017-07-23 16:03

Antibiotic Susceptibility of Versus MDR *P. aeruginosa* (CANWARD 2007-2015) [n=410 or 13.5%]

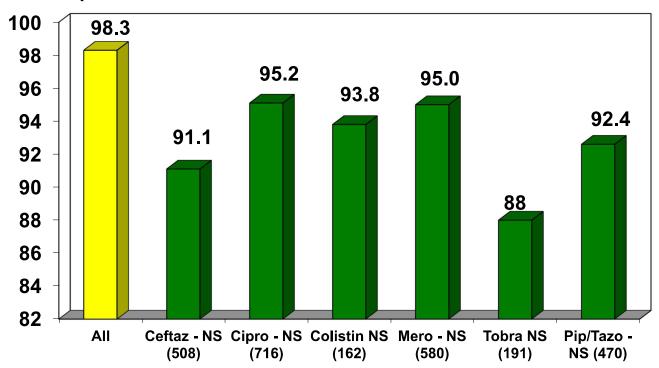
(MDR Resistance 3 or more antibiotic classes)


Zhanel et al. ASA 2017 (P033). Walkty et al. AAC 2013;57:5707-5709.

Page 20 of 54 2017-07-23 16:03

Antibiotic Susceptibility of Versus XDR *P. aeruginosa* (CANWARD 2007-2015) [n=148 or 4.9%]

(XDR Resistance to Ceftaz + Cipro + Mero + Pip/Tazo


Zhanel et al. ASA 2017 (P033). Walkty et al. AAC 2013;57:5707-5709.

Page 21 of 54 2017-07-23 16:03

Ceftolozane-tazobactam Susceptibility of *P. aeruginosa* (CANWARD 2007-2015) [n=3036]

% Susceptible

Zhanel et al. ASA 2017. Walkty et al. AAC 2013;57:5707-5709. CLSI 2016 BP : $\leq 4, 8, \geq 16$ ug/ml

Page 22 of 54 2017-07-23 16:03

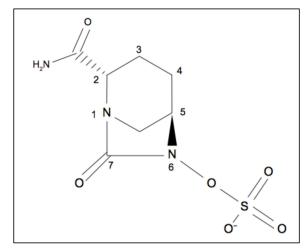
Ceftolozane/Tazobactam Conclusions Today...

Versus other anti-Pseudomonal agents...

- Bactericidal versus P. aeruginosa
 - In vitro
 - In vivo
 - Clinical trials
- Alternative to ? Resistant (or MDR) P. aeruginosa ?
- Need to get the drug on automated susceptibility testing (eg. Vitek 2)

Page 23 of 54 2017-07-23 16:03

NEW/Investigational Agents vs. MDR Gram-negative Pathogens

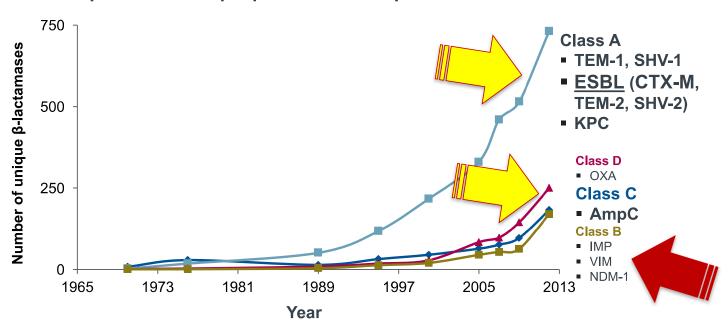

Ceftazidime-Avibactam

Page 24 of 54 2017-07-23 16:03

Ceftazidime/Avibactam

- Non- β -lactam β -lactamase inhibitor
 - Ambler class A (ESBL, KPC), class C
 and some class D (OXA-48) enzymes
- FDA approved in US 2015
 - cUTI and cIAI
- Active against:
 - Most Enterobacteriaceae (including MDR strains)
 - P. aeruginosa

Zhanel GG et al. Drugs. 2013 Feb;73(2):159-77.



Page 25 of 54 2017-07-23 16:03

Increasing Numbers of β-Lactamases by Class

Compilation of unique β-lactamase sequences from natural isolates

Bush K, Fisher JF. Ann Rev Microbiol 2011;65:455-478.

Page 26 of 54 2017-07-23 16:03

CAZ-AVI vs. Enterobacteriaceae

Gram negative aerobe	Ceftazidime Ceftazidime-avibactam Ceftazidime-		Ceftazidime				
	MIC ₅₀	MIC ₉₀	Range	MIC ₅₀	MIC ₉₀	Range	avibactam MIC ₉₀ reduction (fold)
Citrobacter freundii			≤0.25->64			≤0.06–2	
Citrobacter spp.			NA			≤0.06–4	
Ceftazidime non-susceptible			NA			≤0.06–4	
Enterobacter aerogenes			≤0.25->32			≤0.06–2	
Enterobacter cloacae			≤0.25->32			≤0.06–2	
Enterobacter spp.			NA			≤0.03->32	
Ceftazidime-resistant ^b			NA			0.06->32	
AmpC producing + porin loss			64-256			0.25-1	
Escherichia coli			≤0.03->32			≤0.03-2	1
ESBL producing			0.5->64			<0.008-2	
AmpC hyper-producing			0.12->64			≤0.004-4	
ESBL producing and AmpC hyper-producing			2->64			0.015-0.12	
Klebsiella oxytoca			≤0.25->64			≤0.06-1	
Klebsiella pneumoniae			≤0.5->32			≤0.06-2	
ESBL producing			0.12-256			0.06-2	1
OXA-48 carbapenemase-producing			≤0.12-512			<0.008-1	
KPC-producing			32-≥512			≤0.06-1	
ESBL-producing plus porin loss			126-512			0.5-2	
Klebsiella spp.			NA			≤0.03-32	
ESBL			NA			≤0.03-32	
Carbapenem non-susceptible ^e			NA			≤0.03-32	

Zhanel GG et al. Drugs. 2013 Feb;73(2):159-77.

Page 27 of 54 2017-07-23 16:03

Ceftazidime-Avibactam Salvage Therapy for Infections Caused by Carbapenem Resistant Organisms

- Case series of patients with Carbapenem-Resistant Enterobacteriaceae (CRE) and Carbapenem-Resistant
 P. aeruginosa (CRPa) infections
- **36 patients** with CRE and 2 CRPa (mostly IAI)
- 60.5% were life threatening infections
- 94% received antibiotics prior to CAZ-AVI (median 13 days)
- Median duration of CAZ-AVI treatment 16 days
- 65.8% (25/36) concurrent Ab with resistance

CANADIAN ANTIMICROBIAL CARAMETER RESISTANCE ALLIANCE

Temkin et al. AAC 2017 Jan 24;61(2)

Page 28 of 54 2017-07-23 16:03

Ceftazidime-Avibactam Salvage Therapy for Infections Caused by Carbapenem Resistant Organisms

- Clinical/Microbiological cure
 - **73.7%** (28/36)
- 20.8% (5/36) with microbiological **CURE** died

CAZ-AVI resistance on therapy-KPC3 (Shields et al AAC Dec 2016)

• Conclusion:

 CAZ-AVI +/- other antibiotics an option for Carbapenem-Resistant Organisms

85% cure CRE bacteremia (septic shock) [Caston IJID 2017]

Temkin et al. AAC 2017 Jan 24;61(2)

Page 29 of 54 2017-07-23 16:03

NEW/Investigational Agents vs. MDR Gram-negative Pathogens

Imipenem (cilastatin) - Relebactam

Page 30 of 54 2017-07-23 16:03

Imipenem/Relebactam

Phase II Clinical Trials

- cUTI (versus imipenem)
- clAl (versus imipenem)

Strengths

- Gram-positives AND negatives and anaerobes
- Relebactam inhibits ESBL, KPC and AmpC
- Enterobacteriaceae
 - ESBL (*E. coli* and *Klebsiella* spp)
 - KPC (E. coli and Klebsiella spp)
 - MDR (E. coli and Klebsiella spp)
 - Imipenem-R P. aeruginosa

Paschke A, et al. ASM Microbe 2016.

Page 31 of 54 2017-07-23 16:03

Activity of Imipenem/Relebactam Versus Gram-negative Bacilli (MIC₉₀ ug/ml)

Organism	Imipenem	Imipenem/ Relebactam
Klebsiella pneumoniae (n=891)	4	0.25
<i>Klebsiella pneumoniae</i> Bla KPC (n=111)	>16	1
Pseudomonas aeruginosa (n=490)	16	2
<i>Pseudomonas aeruginosa</i> Imipenem-R (n=490)	>16	2

Lapuebla et al. AAC 2015 Aug;59(8):5029-31.

Page 32 of 54 2017-07-23 16:03

Imipenem/Relebactam

Current Phase III Clinical Trials

HAP/VAP: Imipenem/relebactam versus piperacillin/tazobactam

Imipenem-Resistant infections: Imip/ relebactam versus

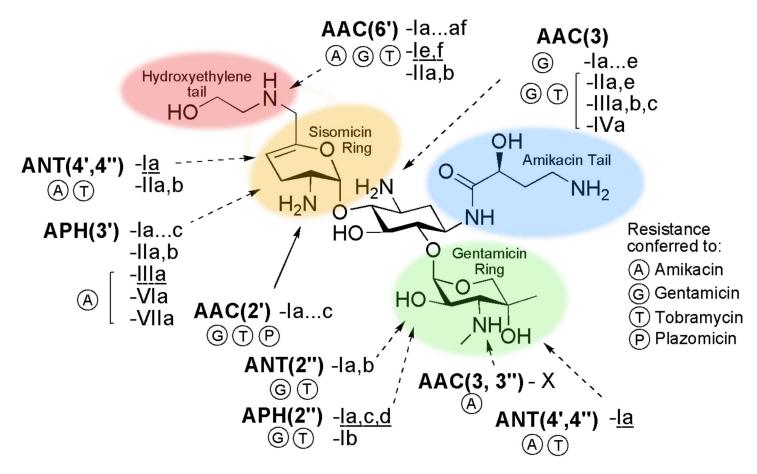
colistin + imipenem - HAP/VAP, cIAI, cUTI

Clinical trials.gov (accessed April 2017)

Page 33 of 54 2017-07-23 16:03

NEW/Investigational Agents vs. MDR Gram-negative Pathogens

Plazomicin


Page 34 of 54 2017-07-23 16:03

Current Aminoglycosides...

Agent	Year	
Streptomycin	1944	
Neomycin	1949	
Kanamycin	1957	
Paromomycin	1959	
Spectinomycin	1961	
Gentamicin	1963	
Tobramycin	1967	
Sisomicin	1970	
Amikacin	1976	

Page 35 of 54 2017-07-23 16:03

Structure/Activity of Plazomicin

Zhanel et al. Expert Reviews in Antiinfective Therapy 2012;10(4):459-473.

Page 36 of 54 2017-07-23 16:03

Activity of Plazomicin vs. Gram-negative bacilli (MIC ug/ml)

	entamicin
Organisms MIC ₉₀	MIC ₉₀
Acinetobacter baumannii 16	>64
Citrobacter spp.	>64
Escherichia coli 2	32
Enterobacter spp. 1	>64
Klebsiella pneumoniae 1	64
Proteus mirabilis 8	>64
Indole+ Proteus 16	>64
Pseudomonas aeruginosa 16	>64
Serratia spp. 4	>64

Zhanel et al. Expert Reviews in Antiinfective Therapy 2012;10(4):459-473.

Page 37 of 54 2017-07-23 16:03

Activity of Plazomicin vs. Organisms With Defined Aminoglycoside Resistance Mechanisms

Suncian	Resistance	MIC ₉₀ (μg/ml)		
Species	Phenotype	Plazomicin	Gent	
	ATCC 25922		0.5	
Escherichia coli (includes ESBL)	AAC(3)-II	2	>64	
	AAC(3)-IV	1	32	
	AAC(6')-I	0.25	2	
	ANT(2")-I	1	>64	
	APH(3')-I	0.25	0.25	
	AAC(3)-II; ANT(3")-I	1	>32	
	AAC(3)-II; AAC(6')-I	2	>32	
	AAC(3)-II, APH(3)-I/II	1 RESISTANCE	>16	

Zhanel et al. Expert Reviews in Antiinfective Therapy 2012;10(4):459-473.

Page 38 of 54 2017-07-23 16:03

Plazomicin Clinical Trials

- Phase 2: (15mg/kg IV)
 - cUTI (versus levofloxacin)
- Phase 3:
 - EPIC (Evaluating Plazomicin In cUTI), 609 patients versus meropenen
 - CARE (Combating Antibiotic Resistant Enterobacteriaceae) 69 patients with serious bacterial infections due to CRE. ...lower rate of mortality or serious disease-related complications observed for plazomicin compared to colistin therapy

Page 39 of 54 2017-07-23 16:03

Conclusions - Plazomicin

- Promising new agent versus MDR GNB
- Appeal of new agent in a well described class
- Need MORE human efficacy and safety data
- Monitor spread of rRNA methylases (NDM-1)
- Clinical trials continue...
 - nephrotoxicity and/or ototoxicity versus legacy aminoglycosides ?

... Submit to FDA Later 2017?

López-Diaz et al. AAC 2017 Jan 24;61(2). Zhanel et al. Exp Rev Antiinf Ther 2012;10(4):459-473.

Page 40 of 54 2017-07-23 16:03

New/Investigational Agents vs. MDR Gram-positive Pathogens (eg. MRSA)

- Ceftobiprole
- Telavancin

- Oritavancin
- Dalbavancin

- High Dose Daptomycin
- Tedizolid
- Eravacycline/omadacycline
- Solithromycin
- Ceftaroline
- Delafloxacin
- AFN-1252

ICAAC/ICC 2015, ASM Microbe 2016.

Deak et al. Ann Intern Med 2016;165:363-372.

Butler, Blaskovich and Cooper. J Antibiot 2017;70:3-24.

Page 41 of 54 2017-07-23 16:03

Ceftobiprole

- Gram-positive cocci:
 - S. aureus/MRSA/MRSE/PRSP/E. faecalis
- Gram-negative bacilli:
 - Enterobacteriaceae
 - AmpC but not ESBL
 - P. aeruginosa
- Indications:
 - CAP (ceftriaxone +/- linezolid) [Nicholson et al. IJAA 2012]
 - HAP (ceftazidime + linezolid) [Awad et al. CID 2014]

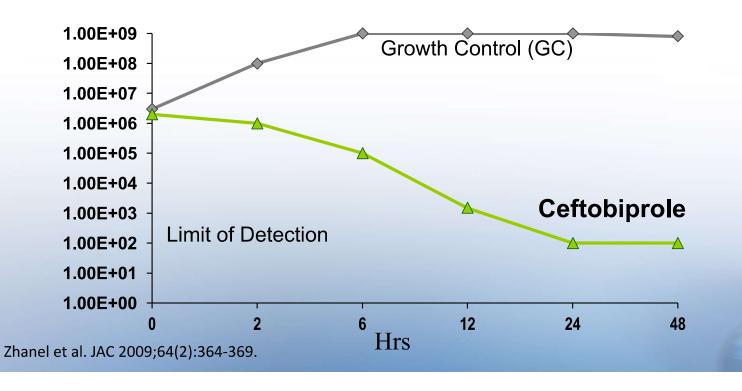
Walkty et al. DMID 2011; 66(2):343-349.; Zhanel et al. Am J Clin Derm 2008;9(4):245-254.; Walkty et al. JAC 2008; Jul;62(1):206-8.

Page 42 of 54 2017-07-23 16:03

Ceftobiprole Activity vs. GPC

(CANWARD 2015-2016, MIC_{50/90}; Eucast BP: *S. aureus* \leq 2 ug/ml)

Organism (#)	Ceftobiprole	Vancomycin	Ceftriaxone
S. aureus (1414)	0.5/1	1/1	4/>64
MRSA (253)	1/2	1/1	>64/>64
HA-MRSA (114)	1/2	1/1	>64/>64
CA-MRSA (95)	1/1	1/1	64/>64
S. epidermidis (170)	0.5/1	1/2	4/>64
S. pneumoniae (260)	≤0.03/≤0.03	≤0.25/0.25	≤0.12/≤0.12
Pen-R SPN (10)	0.12/0.25	≤0.25/0.25	0.5/1


Zhanel et al. ASM Microbe 2017.; Zhanel et al. JAC 2013.; Walkty et al. DMID 2011.

Page 43 of 54 2017-07-23 16:03

Ceftobiprole Kills MRSA

(Simulating 1g IV, (fCmax 35 μ g/mL, $t_{1/2}$ 3.5 hrs)

(Strain #61592, Ceftobiprole MIC 1 μg/mL)

Page 44 of 54 2017-07-23 16:03

Ceftobiprole Activity vs. GNB

(CANWARD 2015-2016, MIC_{50/90;} Eucast BP: Enterobacteriaceae ≤0.25 ug/ml)

Organism (#)	Ceftobiprole	Vancomycin	Ceftriaxone
E. coli ALL (1172)	≤0.06/2	>64/>64	≤0.06/32
<i>E. coli</i> AmpC (10)	0.25/0.5	>64/>64	8/32
<i>E. coli</i> ESBL (69)	>32/>32	>64/>64	64/>64
K. pneumoniae (382)	$\leq 0.06/0.12$	>64/>64	≤0.25/≤0.25
P. aeruginosa (695)	2/8	>64/>64	16/>64

Zhanel et al. ASM Microbe 2017.; Zhanel et al. JAC 2013.; Walkty et al. DMID 2011.; Walkty et al. JAC 2008.

Page 45 of 54 2017-07-23 16:03

Ceftobiprole Conclusions Today...

- Bactericidal Gram-positive activity (MRSA) as good as or better than vancomycin
- Bactericidal Gram-negative (Enterobacteriaceae) activity better than ceftriaxone
- P. aeruginosa activity similar to ceftazidime
- ?? HAP instead of ceftriaxone + vancomycin
- ?? CAP when worried about CA-MRSA
- ?? MRSA instead of vancomycin/linezolid/daptomycin

Page 46 of 54 2017-07-23 16:03

Telavancin (10mg/kg IV OD)

Indications

- HAP/VAP (MRSA)
- cSSSI

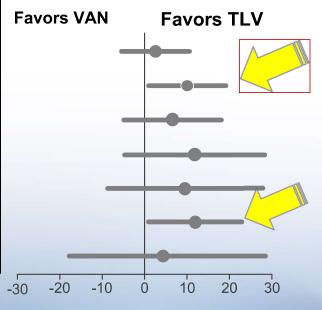
Strengths

- Kills MRSA better than vancomycin
 - In vitro
 - In vivo
 - Clinical trials

Zhanel et al. Drugs 2010;70(7):859-886. Karlowsky, Nichol and Zhanel CID 2015;61(Suppl2):58-68.

Page 47 of 54 2017-07-23 16:03

Telavancin is Active vs All MRSA (CANWARD 2013)


Antibiotic	MIC ₅₀ (ug/ml)	MIC ₉₀ (ug/ml)	Fold > Vanco
Vancomycin	0.5	1	
Telavancin	0.06	0.06	8-16
Linezolid	2	2	

Karlowsky, Nichol and Zhanel CID 2015;61(Suppl2):58-68.

Page 48 of 54 2017-07-23 16:03

Telavancin vs Vancomycin in HAP/VAP

ATTAIN 1, ATTAIN				
	TLV Cured/n	VAN Cure/n	Delta	95% CI
All S. aureus	171/219	161/214	3.00	(-5.00, 11.00)
Mono S. aureus	123/146	113/152	9.9	(0.7, 19.1)
Mono MRSA	72/88	86/116	7.9	(-3.5, 19.3)
Mono MSSA	51/58	27/36	12.2	(-4.2, 28.8)
VAN MIC<=0.5	33/37	22/28	10.1	(-9.00, 28.8)
VAN MIC>=1	74/85	78/105	12.5	(0.5, 23.0)
Mono S. pneumonaie	18/20	18/21	5.9	(-19.1, 29.7)

Mono = monomicrobial.

Adapted from: Sandrock & Shorr, 2015, CID, 61(Suppl2): 79-86 Rubinstein et al., 2011, CID 52:31-9

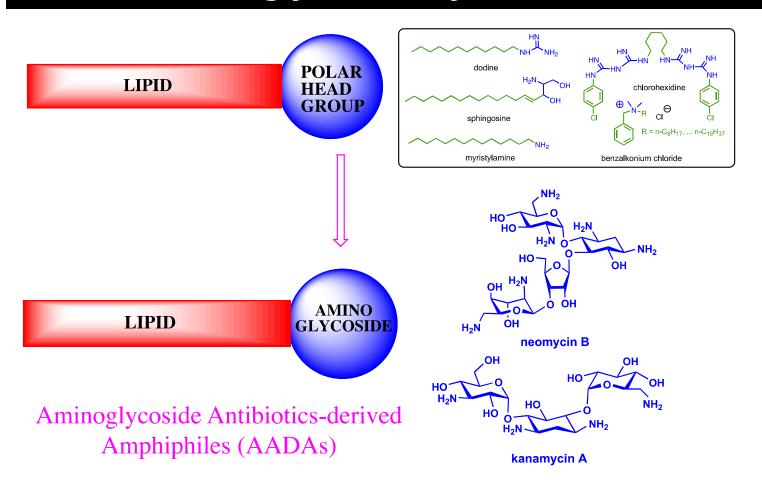
Page 49 of 54 2017-07-23 16:03

Telavancin Conclusions Today...

Versus vancomycin...

- Kills MRSA better than vancomycin
 - In vitro
 - In vivo
 - Clinical trials
- ? Alternative to vancomycin in MRSA HAP/VAP when vancomycin:
 - Adverse effects
 - Intolerance
 - Failure
 - MRSA MIC ≥ 1 ug/ml

Page 50 of 54 2017-07-23 16:03


Oritavancin (Single dose therapy-SSTI)

- Gram-positive cocci (MRSA), VRE
- t ½ ~ 390 hours (~16.3 days)
- 1 IV dose treatment regimen for skin/soft tissue infections (vs. vancomycin)

Zhanel et al. ERAT 2008;6:67-81. Zhanel et al. Drugs 2010;70:859-886. Zhanel et al. CID 2012;54 (Suppl 3):214-218.

Page 51 of 54 2017-07-23 16:03

Aminoglycoside Hybrids

Findlay, Zhanel and Schweizer. Antimicrobial Agents Chemother. 54, 4049-4058 (2010)

Page 52 of 54 2017-07-23 16:03

Conclusions - Good News!

- We have new agents for resistant Gram-negative Bacilli (ESBL + CRE Enterics, MDR *P. aeruginosa*)
- We have new agents for resistant Gram-positive cocci (MRSA, VRE)

Page 53 of 54 2017-07-23 16:03

Conclusions - Bad News

- Not all agents coming to Canada!
- cSSTI, cUTI/cIAI indications
- Need to do MIC testing (disks/Etest) in lab
- Need to get onto Vitek 2, Microscan

Page 54 of 54 2017-07-23 16:03