Hot Topics in Infection Control

AMMI – CACMID 2014, Victoria, BC

Titus Wong BScPharm MD FRCPC
Medical Microbiology and Infection Control, Vancouver General Hospital
Department of Pathology, Faculty of Medicine, University of British Columbia

Outline

Surveillance

Outbreaks Alerts

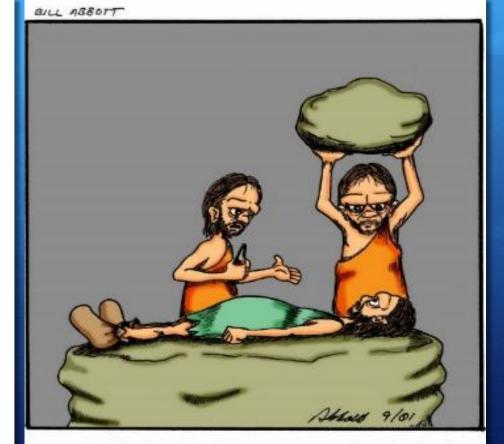
Typing

IC Practices

Gowning and Gloving

Chlorhexidine Washing

Presurgical Bundles


Environmental Hygiene

Manual Cleaning

Hydrogen Peroxide Vapor

UVC disinfection

Antimicrobial Surfaces

"...and this is Ralph, your anesthesiologist."

Old friends, New Faces

Ebola in Guinea

Plague in Madagascar

Dengue in SE Asia, South and Central America,

Polio in Afghanistan, Cameroon, Ethiopia, Kenya, Nigeria, Pakistan, Somalia, Syrian Arab Republic

MERS-CoV in KSA

CRE and CPO everywhere

H7N9 Appropriate paranoia

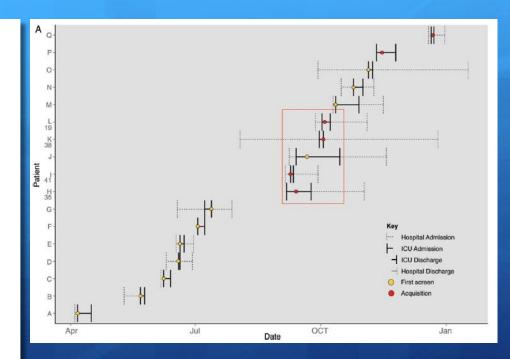
theguardian

News Sport Comment Culture Business Money Life & style

News \ World news \ Guinea

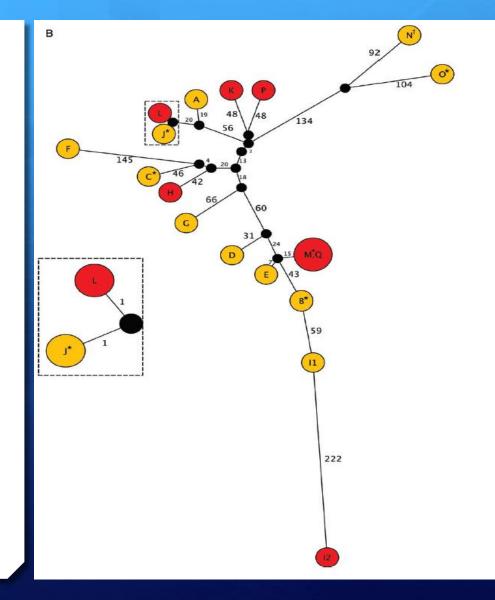
Fear and frustration as Guinea struggles to contain Ebola outbreak

Virus has claimed 84 lives and jumped borders to Sierra Leone and Liberia, raising concerns that it could sweep across region


Monica Mark in Lagos theguardian.com, Friday 4 April 2014 14.19 BST

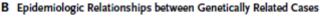
Doctors without Borders carry a body on a stretcher at a centre for victims of the Ebola virus in Guekedou, Guinea. Photograph: Seyllou/AFP/Getty Images

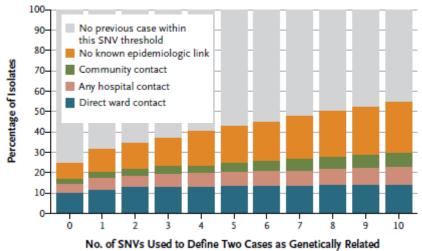
- •Prospective 14 month MSSA/MRSA surveillance study in single ICU
- •Whole Genome Sequencing vs Traditional epidemiologic definition + Spa typing
- •184/1109 pts had SA on admission, 44 new acquisitions during ICU stay, acquisitions
- •only 18.9% can be explained by patient-patient transmission.


MAJOR ARTICLE

Whole-Genome Sequencing Shows That Patient-to-Patient Transmission Rarely Accounts for Acquisition of *Staphylococcus aureus* in an Intensive Care Unit

James R. Price, ¹ Tanya Golubchik, ² Kevin Cole, ³ Daniel J. Wilson, ⁴⁵ Derrick W. Crook, ⁴⁶ Guy E. Thwaites, ⁷ Rory Bowden, ⁵ A. Sarah Walker, ⁴⁶ Timothy E. A. Peto, ⁴⁶ John Paul, ¹³ and Martin J. Llewelyn ^{1,8}


- •Prospective 14 month MSSA/MRSA surveillance study in single ICU
- •Whole Genome Sequencing vs Traditional epidemiologic definition + Spa typing
- •184/1109 pts had SA on admission, 44 new acquisitions during ICU stay, acquisitions
- •only 18.9% can be explained by patient-patient transmission.



Retrospective 3.6 year study, WGS comparison of 2377 *C.* difficile positive isolates from 4 hospitals

- →1223 isolates sequenced (3:1 inpatients:outpatients)
- →only 333 (35%) genetically related (< 2 SNV) from a previous case
- \rightarrow 428 (45%) >10 SNVs = genetically unique
- →126 (13%) had ward contact
- →29 (3%) had overlapping stay but not ward contact
- →21 (2%) had both ward contact and overlapping stay

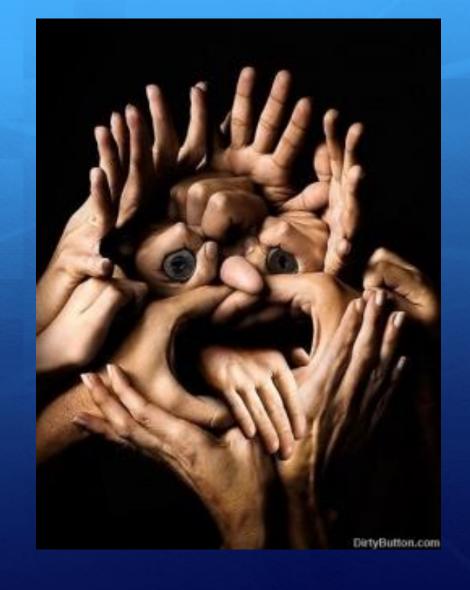
The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

SEPTEMBER 26, 2013

VOL. 369 NO. 13

Diverse Sources of *C. difficile* Infection Identified on Whole-Genome Sequencing

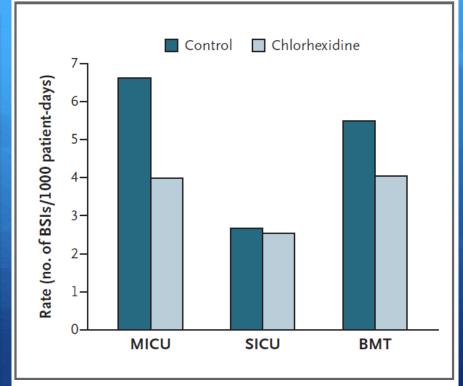

David W. Eyre, B.M., B.Ch., Madeleine L. Cule, Ph.D., Daniel J. Wilson, D.Phil., David Griffiths, B.Sc.,
Alison Vaughan, B.Sc., Lily O'Connor, B.Sc., Camilla L.C. Ip, Ph.D., Tanya Golubchik, Ph.D., Elizabeth M. Batty, Ph.D.,
John M. Finney, B.Sc., David H. Wyllie, Ph.D., Xavier Didelot, D.Phil., Paolo Piazza, Ph.D., Rory Bowden, Ph.D.,
Kate E. Dingle, Ph.D., Rosalind M. Harding, Ph.D., Derrick W. Crook, M.B., B.Ch., Mark H. Wilcox, M.D.,
Tim E.A. Peto, D.Phil., and A. Sarah Walker, Ph.D.

Whole Genome Sequencing

WGS provides high level discrimination allowing for improved surveillance of transmission events

A minority of CDI transmission in a community in the UK is caused by symptomatic patients

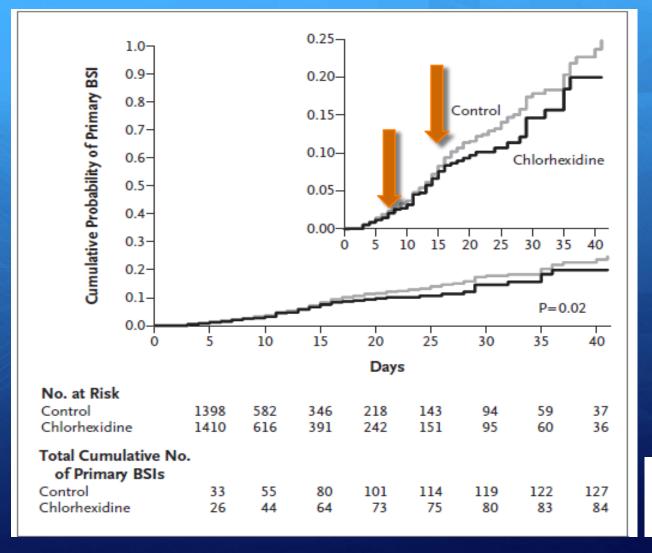
What is the contribution of other sources to CDI transmissions?



Vertical vs Horizontal Approaches

Covered extensively by E. Bryce and A. Mcgeer

- Multicenter, cluster-randomized, nonblinded crossover trial
- •9 ICUs/BMTU, 6 hospitals, 7727 patients
- Daily washing with CHG washcloths vs control washcloths
- •Daily CHG washing of adult patients in ICU reduced (1) MRDO acquisition and (2) BSI rates
 - •(1) MDRO acquisition (5.10 vs 6.60 cases/ 1000 pt days, P=0.03)
 - •(2) BSI rate (4.78 vs 6.60 cases / 1000 pt days, p=0.007) driven by CNS reductions
- •did not detect MRSA or VRE high-level resistance to chlorhexidine



The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

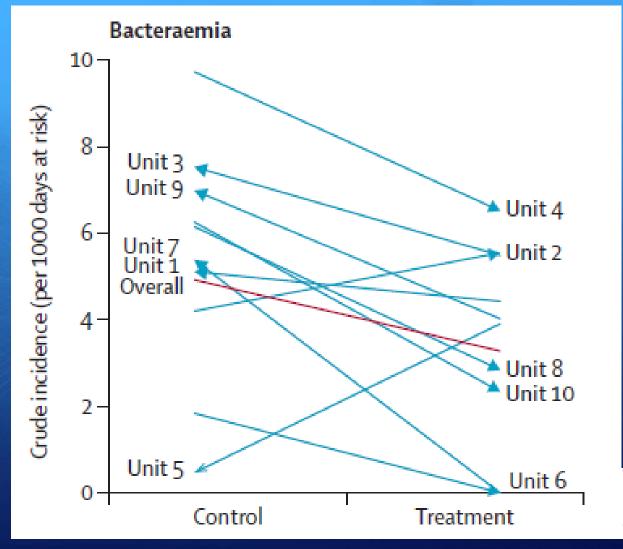
Effect of Daily Chlorhexidine Bathing on Hospital-Acquired Infection

Michael W. Climo, M.D., Deborah S. Yokoe, M.D., M.P.H., David K. Warren, M.D., Trish M. Perl, M.D., Maureen Bolon, M.D., Loreen A. Herwaldt, M.D., Robert A. Weinstein, M.D., Kent A. Sepkowitz, M.D., John A. Jernigan, M.D., Kakotan Sanogo, M.S., and Edward S. Wong, M.D.

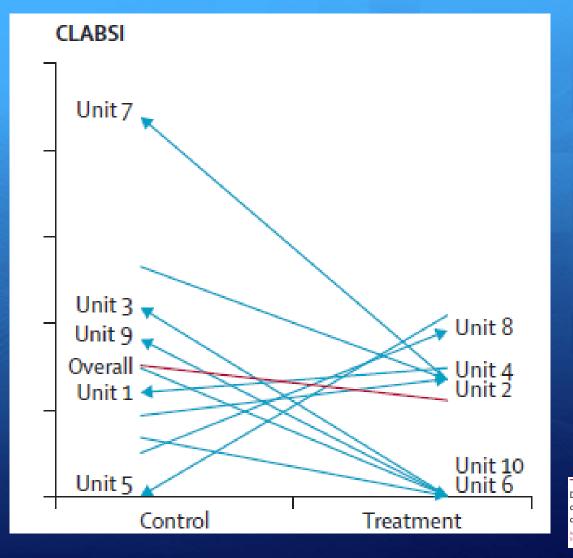
The NEW ENGLAND TOURNAL of MEDICINE

ORIGINAL ARTICLE

Effect of Daily Chlorhexidine Bathing on Hospital-Acquired Infection


Michael W. Climo, M.D., Deborah S. Yokoe, M.D., M.P.H., David K. Warren, M.D. Trish M. Perl, M.D., Maureen Bolon, M.D., Loreen A. Henvaldt, M.D., Robert A. Weinstein, M.D., Kent A. Sepkowitz, M.D., John A. Jernigan, M.D., Kakotan Sanogo, M.S., and Edward S. Wong, M.D.

- •Non-blinded, cluster-randomized, cross-over trial
- •10 pediatric ICU, 5 hospitals, 1521 patients
- Daily CHG bathing vs soap and water
- Daily CHG bathing in pediatric ICU decreased BSI rates
- •PP: CHG 3.28/1000 pt days vs Control 4.93/1000 pt days
- •AE with CHG: 1.2 per 1000 pt days


Daily chlorhexidine bathing to reduce bacteraemia in critically ill children: a multicentre, cluster-randomised, crossover trial

Aaron M Milstone, Alexis Elward, Xiaoyan Song, Danielle M Zerr, Rachel Orscheln, Kathleen Speck, Daniel Obeng, Nicholas G Reich, Susan E Coffin, Trish M Perl, for the Pediatric SCRUB Trial Study Group

Daily chlorhexidine bathing to reduce bacteraemia in critically ill children: a multicentre, cluster-randomised, crossover trial

Aaron M. Milstons, Alexis Ehward, Xisoyan Song, Danielle M. Zerr, Roschel Orscheln, Kathleen Speck, Daniel Obeng, Nicholas G. Reich, Susan E. Coffin Trish M. Parl, for the Pediatric SCRUB Trial Study Group

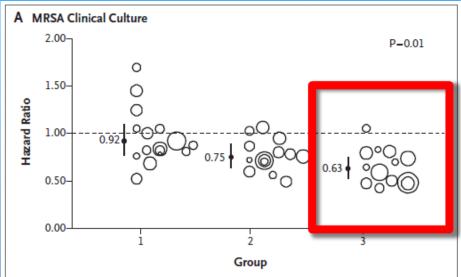
Daily chlorhexidine bathing to reduce bacteraemia in critically ill children: a multicentre, cluster-randomised, crossover trial

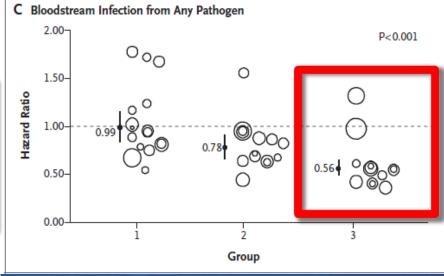
Aaron M Milotone, Alexis Elward, Xisoyan Song, Danielle M Zerr, Rachel Orscheln, Kathleen Speck, Daniel Obeng, Nicholas G Reich, Susan E Caffin, Trish M Perl, for the Pedistris SCRUB Trial Study Gooup

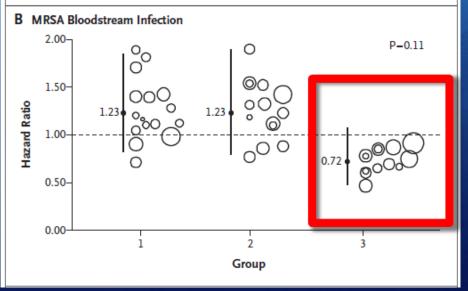
Huang, REDUCE MRSA trial, NEJM 2013

- Cluster-randomized trial
- •43 hospitals,ICU, 74,256 patients
- •(1) MRSA screening + isolation vs (2) targeted decolonization vs (3) universal decolonization
- •Universal decolonization more effective than targeted decolonization or screening and isolation for reducing BSI and for MRSA acquisition

The NEW ENGLAND JOURNAL of MEDICINE


ESTABLISHED IN 1812


JUNE 13, 2013

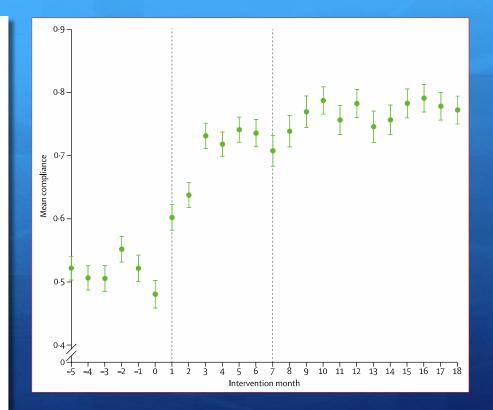

VOL. 368 NO. 24

Targeted versus Universal Decolonization to Prevent ICU Infection

Susan S. Huang, M.D., M.P.H., Edward Septimus, M.D., Ken Kleinman, Sc.D., Julia Moody, M.S., Jason Hickok, M.B.A., R.N., Taliser R. Avery, M.S., Julie Lankiewicz, M.P.H., Adrijana Gombosev, B.S., Leah Terpstra, B.A., Fallon Hartford, M.S., Mary K. Hayden, M.D., John A. Jernigan, M.D., Robert A. Weinstein, M.D., Victoria J. Fraser, M.D., Katherine Haffenreffer, B.S., Eric Cui, B.S., Rebecca E. Kaganov, B.A., Karen Lolans, B.S., Jonathan B. Perlin, M.D., Ph.D., and Richard Platt, M.D., for the CDC Prevention Epicenters Program and the AHRQ DECIDE Network and Healthcare-Associated Infections Program*

ESTABLISHED IN 1812 JUNE 13, 2013

Targeted versus Universal Decolonization to Prevent ICU Infection


Suran S, Huang, M.D., M.P.H., Edward Septimus, M.D., Ken feliennum, S.C.D., Julia Mondy, M.S., Jason Hickler, M.B., R.N., Taliser, R.-Very, M.S., Julia Landeviez, M.P.H., Adipina Combowe, S.S., Leah Terptra, B.A., Falion Harford, M.S., May K, Hughen, M.D., John A, Jernigan, M.D., Robert, A. Weinstein, M.S., Victoria J, France, M.D., Latherine Hallmerfile, B.S., Fice Cai, S., Robecca, E. Kagano, B.R., Aaran Lohan, B.S., Jonathan B, Perlin, M.D., Ph.D., and Bichard Patt, M.D., for the C.D. Pewertion Epicenters Program And H. A. Hander, M. S. Carlon, M. S. Carlon, M. S. S. Carlon, M. S. Lander, M. Lander, M. S. Lander, M. S. Lander, M. S. Lander, M. S. Lander, M. Lander, M. S. Lander, M. Lander, M. S. Lander, M. S. Lander,

Multicenter, 13 adult ICUs, interrupted time series and cluster randomized trial

interrupted time series to assess: improved hand hygiene + chlorhexidine body washing → decreased MRSA acquisition, but not VRE or HRE (highly resistant Enterobacteriaceae)

cluster randomized trial to assess: PCR screening for MRSA,VRE + chromo HRE vs conventional chromo screening → no difference in acquisition of AROs

Interventions to reduce colonisation and transmission of antimicrobial-resistant bacteria in intensive care units: an interrupted time series study and cluster randomised trial

Lennie PG Derde, Ben S Cooper, Herman Goossens, Surbhi Malhotra-Kumar, Rob J L Willems, Marek Gniadkowski, Waleria Hryniewicz, Joanna Empel, Mirjam J D Dautzenberg, Djillali Annane, Irene Aragão, Annie Chalfine, Uga Dumpis, Francisco Esteves, Helen Giamarellou, Igor Muzlovic, Giuseppe Nardi, George L Petrikkos, Viktorija Tomic, Antonio Torres Martí, Pascal Stammet, Christian Brun-Buisson*, Marc J M Bonten*, on behalf of the MOSAR WP3 Study Team

	Antimicrobial-resistant bacter			
Phase 1 trend	1·014 (0·996–1·031; p=0·12)			
Phase 2 step change	0·955 (0·676–1·348; p=0·79)			
Phase 2 change in trend	0·976 (0·954–0·999; p=0·04)	-0·999; p=0·04)		
MRSA	VRE	HRE		
1·042 (1·010–1·075; p=0·01)	1.000 (0.971–1.030; p=0.99)	1·012 (0·992–1·032; p=0·25)		

0.884 (0.481-1.626; p=0.69)

0.982 (0.945-1.020; p=0.36)

1.159 (0.654-2.053; p=0.61)

0·925 (0·890–0·962; p<0·001)

0.831 (0.559-1.235; p=0.36)

0.994 (0.968–1.021; p=0.66)

daily chlorhexidine washing in ICU (+/- mupirocin):

- -decreases acquisition of MRSAdecreases BSI
- -*more effective than targeted decolonization or screening and isolation

But:

- -what about resistance? VRE? CRE?
- -what about non-ICU wards?

- Cluster-randomized trial
- •20 hospitals, 20 ICUs, 26 180 patients
- •Universal gloves and gowning vs usual care

 Intervention did not decrease MRSA and VRE acquisition (1° endpoint)

> MRSA assessed alone was statistically significantly different

Original Investigation

Universal Glove and Gown Use and Acquisition of Antibiotic-Resistant Bacteria in the ICU A Randomized Trial

Anthony D. Harris, MD, MPH; Lisa Pineles, MA; Beverly Belton, RN, MSN; J. Kristie Johnson, PhD; Michelle Shardell, PhD; Mark Loeb, MD, MSc; Robin Newhouse, RN, PhD; Louise Dembry, MD, MS, MBA; Barbara Braun, PhD; Eli N. Perencevich, MD, MS; Kendall K. Hall, MD, MS; Daniel J. Morgan, MD, MS; and the Benefits of Universal Glove and Gown (BUGG) Investigators

Table 2. Rates at Risk of Acquisition of Antibiotic-Resistant Bacteria per 1000 Patient-Days

	Intensive Care Units							
	Intervention		Control		ol			
	No. of Acquisitions	Patient-Days at Risk	Mean Rate (95% CI) ^a	No. of Acquisitions	Patient-Days at Risk	Mean Rate (95% CI) ^a	Difference (95% CI) ^b	<i>P</i> Value ^c
Drug-Resistant B	acteria							
VRE or MRSA								
Study period	577	32 693.0	16.91 (14.09 to 20.28)	517	31 765.0	16.29 (13.48 to 19.68)		
Baseline	178	8684.0	21.35 (17.57 to 25.94)	176	9804.5	19.02 (14.20 to 25.49		
Changed			-4.47 (-9.34 to 0.45)			-2.74 (-6.98 to 1.51)	-1.71 (-6.15 to 2.73)	.57
VRE								
Study period	411	27 765.5	13.59 (10.26 to 17.99)	337	28 340.5	11.88 (8.65 to 16.33)		
Baseline	108	7691.5	15.18 (10.50 to 21.95)	122	8818.0	14.37 (10.31 to 20.02		
Changed			-1.60 (-7.18 to 3.98)			-2.48 (-5.53 to 0.56)	0.89 (-4.27 to 6.04)	.70
MRSA								
Study period	199	30 454.5	6.00 (4.63 to 7.78)	191	30 024.0	5.94 (4.59 to 7.67)		
Baseline	77	7841.0	10.03 (8.05 to 12.50)	59	9182.0	6.98 (4.50 to 10.83)		
Changed			-4.03 (-6.50 to -1.56)			-1.04 (-3.37 to 1.28)	-2.98 (-5.58 to -0.38)	.046

Table 3. Average Hand-Hygiene Compliance and Health Care Worker Visits per Hour

	Intensive Care Units							
	Intervention		Control					
	No. of Events	No. of Observations ^a	Mean (95% CI), % ^b	No. of Events	No. of Observations ^a	Mean (95% CI), % ^b	Mean Difference (95% CI), % ^c	<i>P</i> Value ^d
Hand-hygiene compliance, %								
Room entry	1563	2828	56.1 (47.2 to 66.7)	1644	3231	50.2 (41.4 to 60.9)	5.91 (-6.91 to 18.7)	.42
Room exit	027	2649	78.3 (72.1 to 85.0)	2080	3266	62.9 (54.4 to 72.8)	15.4 (8.99 to 21.8)	.02
Health care-worker visits	213	756.5	4.28 (3.95 to 4.64)	3775	716.5	5.24 (4.46 to 6.16) ^e	-0.96 (-1.71 to -0.21)	.02

Mehotra, ICHE 2013

Prospective cohort study, 528 patients admission, day 3, 7, 14, discharge surveys on discharge HCAHPS 20% perceived problem with care

contact precautions associated with perceived concerns with care (OR 2.05, 95% Cl 1.31 - 3.21, p<0.01)

Universal gown/glove policy

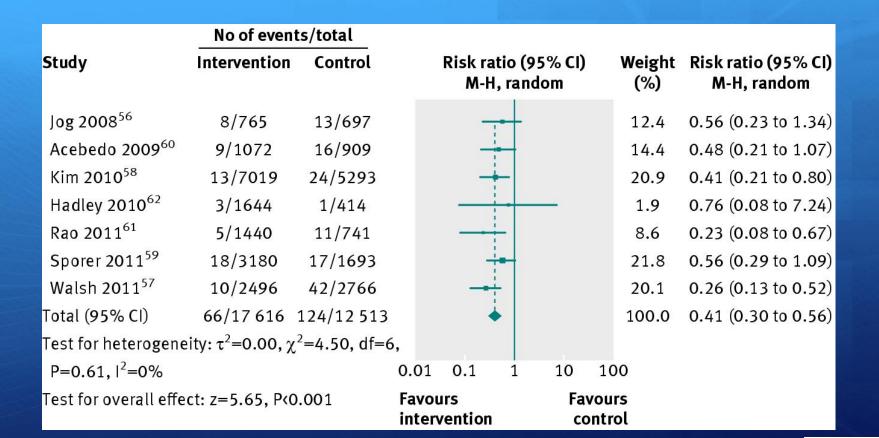
An ICU policy requiring universal gowning and gloving:

- -did not decrease MRSA and VRE acquisition
- -impacted hand hygiene *after* patient contact, but not before
- -decreased patient interaction, but (contrary to a previous study), adverse events was not SS different

Patients perceived problems with care when under contact precautions

- Meta-analysis of decolonization bundles to decrease SSI's in cardiac and orthopedic surgery
- 39 studies
- Nasal decolonization: 17 studies pooled RR 0.39 (95% Cl 0.31-0.5)
- all patients decolonized RR 0.40 (95% Cl 0.29 – 0.55)
- SA + patients decolonized RR
 0.36 (95% Cl 0.22 0.57)

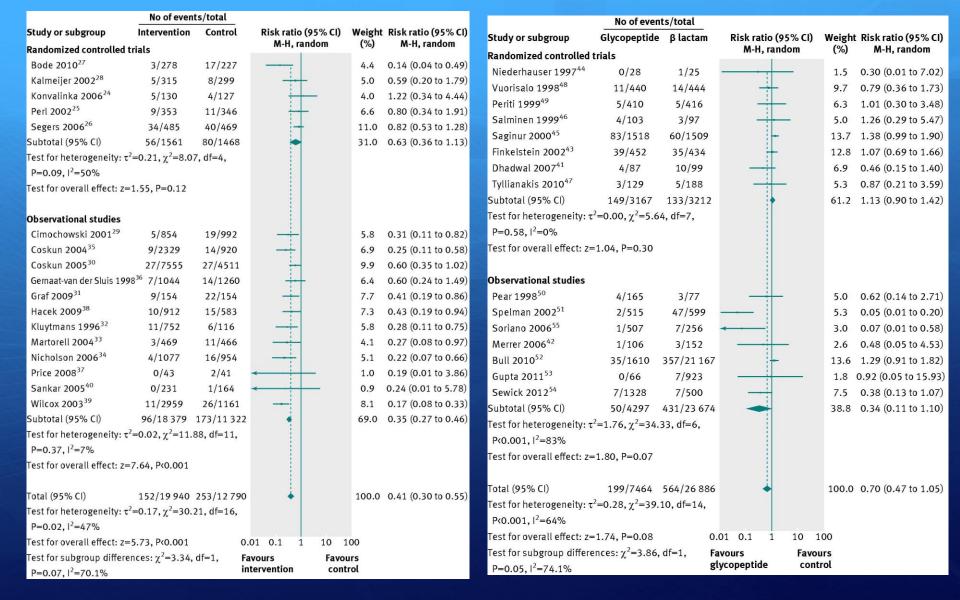
BMJ 2013;346:f2743 doi: 10.1136/bmj.f2743 (Published 13 June 2013)


Page 1 of 13

RESEARCH

Effectiveness of a bundled intervention of decolonization and prophylaxis to decrease Gram positive surgical site infections after cardiac or orthopedic surgery: systematic review and meta-analysis

© 06 OPEN ACCESS


Marin Schweizer assistant professor¹²³, Eli Perencevich professor¹²³⁴, Jennifer McDanel student research assistant², Jennifer Carson research assistant¹, Michelle Formanek student research assistant²³, Joanne Hafner associate project director⁵, Barbara Braun project director⁵, Loreen Herwaldt professor¹²⁴

RESEARCH

Effectiveness of a bundled intervention of decolonization and prophylaxis to decrease Gram positive surgical site infections after cardiac or orthopedic surgery: systematic review and meta-analysis

Mann Schweizer asseklant prodessor "", EL Prierenowich professor "", Jehniner McChanel skulvi research assistant", Jennier Carson research assistant ", Michelle Formanek skulvier research assistant", Joanne Haffner associate project director", Barbara Braun project director's, Loreen Harcealth conference 1²⁴

Environmental / Equipment Cleaning

Why is it important?

Careful attention to baseline infection rates, trends and study population sample size considerations Control for other key
infection prevention component
Hand Hygiene
Source Control/Isolation
Device/Procedure Specific Measu
Antibiotic Use

V

Demonstrate† reduced infections

IV.

Demonstrate† reduced pathogen transmission via admission-discharge active surveillance testing or clinical incidence

III.

Demonstrate that in-use bioburden reduction may be clinically relevant

- Terminal-only use: reduction of "same room transmission"
- Terminal and daily use: reduction in hand contamination rates

II.

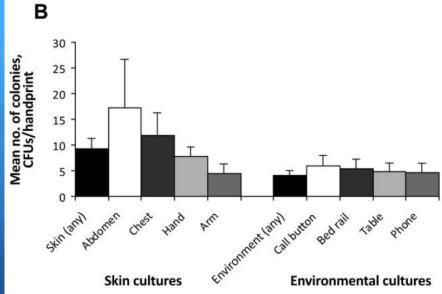
Demonstrate in-use bioburden reduction

I.

Laboratory demonstration of bioburden reduction efficacy (10³-106 reductions, depending on claim)

EDITORIAL COMMENTARY

Climbing the Evidentiary Hierarchy for Environmental Infection Control


L. Clifford McDonald and Matthew Arduino

Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia

(See the Major Article by Passaretti et al, on pages 27-35.)

Stiefel, ICHE 2011

- •Single center surveillance study of 40 MRSA colonized patients
- •Compared acquisition of MRSA from examining an MRSA+ patient (4 sites) vs touching the patient's environment (4 sites)
- •Similar likelihood of acquiring MRSA from patient (40%) as the environment (45%)

Contamination of Hands with Methicillin-Resistant Staphylococcus aureus after Contact with Environmental Surfaces and after Contact with the Skin of Colonized Patients

Usha Stiefel, MD;^{1,2} Jennifer L. Cadnum, BS;¹ Brittany C. Eckstein, BS;¹ Dubert M. Guerrero, MD;³ Mary Ann Tima, BS;¹ Curtis J. Donskey, MD^{2,3}

- •Convenience environmental surveillance of
- •312 rooms after C/D (clean/disinfection)
- •134 rooms after C/D + HP vapor
- •37 rooms after C/D + HP vapor + C/D
- •Manual cleaning is not sufficient: 26.6% of rooms had > 1 ARO after C/D
- HP vapor was effective in eradicating
 ARO's from the environment

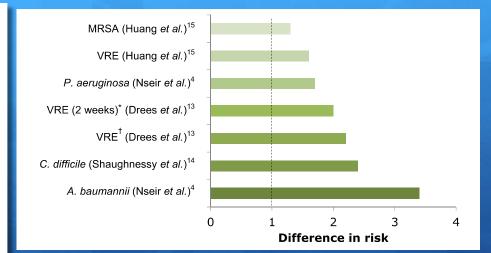
ORIGINAL ARTICLE

Isolation of *Acinetobacter baumannii* Complex and Methicillin-Resistant *Staphylococcus aureus* from Hospital Rooms Following Terminal Cleaning and Disinfection: Can We Do Better?

Farrin A. Manian, MD, MPH;^{1,2} Sandra Griesenauer, RN, MSN;² Diane Senkel, RN;² Janice M. Setzer, RN;² Sara A. Doll, RN;² Annie M. Perry, RN;² Michelle Wiechens, RN²

 Table 1

 Survival of hospital pathogens on dry hospital surfaces


Organism	Survival time
Clostridium difficile (spores)	>5 Months
Acinetobacter spp	3 Days to 11 months ⁷⁹
Enterococcus spp including VRE	5 Days to $>$ 46 months ³²
Pseudomonas aeruginosa	6 Hours to 16 months
Klebsiella spp	2 Hours to >30 months
Staphylococcus aureus, including MRSA	7 Days to >12 months ⁸⁰
Norovirus (and feline calicivirus)	8 Hours to >2 weeks ⁸¹

NOTE. Adapted from Kramer et al.31

Table 2Transfer of pathogens from surfaces to the hands of health care personnel

Direct patient contact	Contact with environmental surfaces only
45% of 50 HCP acquired MRSA on their gloved hands ³⁹ 50% of 30 HCP acquired <i>Clostridium difficile</i> on their gloved hands ⁴⁰ Compliance with hand hygiene: 80% ⁴¹	52% of 44 HCP acquired VRE on their hands or gloves ¹⁰ 40% of 50 HCP acquired MRSA on their gloved hands ³⁹ 50% of 30 HCP acquired <i>C difficile</i> on their gloved hands ⁴⁰ Compliance with hand hygiene: 50% ⁴¹

HCP, Health care personnel.

Contents lists available at ScienceDirect

American Journal of Infection Control

journal homepage: www.ajicjournal.org

Original research article

Evidence that contaminated surfaces contribute to the transmission of hospital pathogens and an overview of strategies to address contaminated surfaces in hospital settings

Jonathan A. Otter PhD a,b,*, Saber Yezli PhD b, James A.G. Salkeld BSc b, Gary L. French MD, FRCPath a

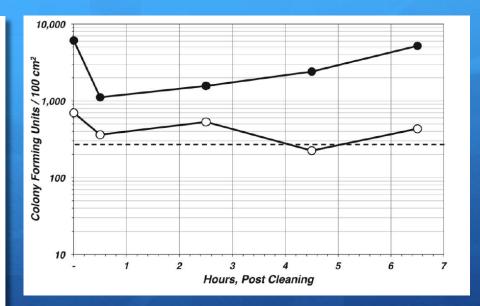
Centre for Clinical Infection and Diagnostics Research (CIDR), Department of Infectious Diseases, King's College London & Guy's and St. Thomas' NHS Foundation Trust, London, UK

- •Prospective cohort study, single center, 6 wards, 6350 patient admissions
- •Standard cleaning vs standard cleaning + hydrogen peroxide vapor
- •Patients in HP vapor disinfected rooms had a reduction in VRE acquisition vs standard (2.4 /1000 pt days vs 11.6 /1000 pt days)
- •No difference in MRSA, MDR GNB, CDI

MAJOR ARTICLE

An Evaluation of Environmental Decontamination With Hydrogen Peroxide Vapor for Reducing the Risk of Patient Acquisition of Multidrug-Resistant Organisms

Catherine L. Passaretti, ^{1,2,3} Jonathan A. Otter, ⁴ Nicholas G. Reich, ^{5,6} Jessica Myers, ⁵ John Shepard, ¹ Tracy Ross, ⁷ Karen C. Carroll, ⁷ Pam Lipsett, ⁸ and Trish M. Perl ^{1,2,5}



UV-C Machines and HAI's

D. Anderson at Duke, 9 hospitals, cluster-randomized trial with (1) TRU-D + bleach vs (2) TRU-D + quats vs (3) bleach only vs (4) quats only **Results pending...**

- Prospective, unblinded, environmental surveillance study
- •Single ICU, 3 Beds with copper bedrails vs 3 Beds with plastic bedrails sampled
- •Sampled before clean, then serially after cleaning up to 7 hours
- •Total of 75 observations for each
- Manual cleaning did not reach benchmark
- •Copper bedrails consistently limits the CFU of bacteria compared to plastic bedrails

Copper Continuously Limits the Concentration of Bacteria Resident on Bed Rails within the Intensive Care Unit

Michael G. Schmidt, PhD;¹ Hubert H. Attaway III, MS;¹ Sarah E. Fairey, BS;¹ Lisa L. Steed, PhD;² Harold T. Michels, PhD;³ Cassandra D. Salgado, MD, MS⁴

TABLE 1. Assessment of the Antimicrobial Activity of Copper to Control the Bacterial Burden between Cleanings with Virex 256

	Plastic bed rai	íls	Copper bed ra		
Time point	Colony count, mean cfu/100 cm 2 (\pm SE)	Reduction, %	Colony count, mean cfu/100 cm ² (±SE)	Reduction, %	P
Precleaning	6,102 ± 2,572		698 ± 368		.006
Hour 0.5	$1,112 \pm 802$	82	362 ± 282	48	.069
Hour 2.5	$1,560 \pm 936$	74	530 ± 530	24	.012
Hour 4.5	$2,396 \pm 1,502$	61	224 ± 94	68	.013
Hour 6.5	5,198 ± 2,386	15	434 ± 236	38	.002

Copper Continuously Limits the Concentration of Bacteria Resident on Bed Rails within the Intensive Care Unit

Michael G. Schmidt, PhD;¹ Hubert H. Attaway III, MS;¹ Sarah E. Fairey, BS;¹ Lisa L. Steed, PhD;² Harold T. Michels, PhD;³ Cassandra D. Salgado, MD, MS⁴

- Non-blinded, randomized control trial
- •3 ICU's, 650 patients
- •ICU rooms with copper clad surfaces (bed rails, overbed tables, IV poles, visitor arm chairs, +/- nurse button, computer peripherals) vs standard items
- Patients in copper-clad ICU rooms had statistically significantly lower HAI / colonization with MRSA or VRE

INFECTION CONTROL AND HOSPITAL EPIDEMIOLOGY MAY 2013, VOL. 34, NO. 5

ORIGINAL ARTICLE

Copper Surfaces Reduce the Rate of Healthcare-Acquired Infections in the Intensive Care Unit

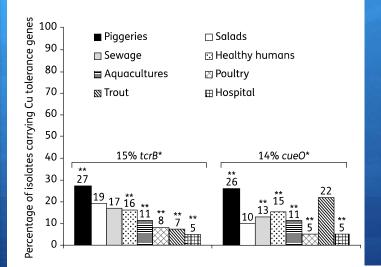
Cassandra D. Salgado, MD;¹ Kent A. Sepkowitz, MD;² Joseph F. John, MD;³ J. Robert Cantey, MD;¹ Hubert H. Attaway, MS;⁴ Katherine D. Freeman, DrPH;⁵ Peter A. Sharpe, MBA;⁶ Harold T. Michels, PhD;⁷ Michael G. Schmidt, PhD⁴

TABLE 2. Distribution of Patients by Treatment Assignment for Primary and Secondary Outcomes

	Copper $(n = 294)$	Noncopper $(n = 320)$	Total	P
Primary outcome: new HAI or colonization				.020
No HAI or colonization	273 (92.86)	279 (87.19)	552 (89.90)	
HAI and/or colonization	21 (7.14)	41 (12.81)	62 (10.10)	
Secondary outcomes				
HAI only	10 (3.40)	26 (8.12)	36 (5.86)	.013
Colonization only	4 (1.36)	12 (3.75)	16 (2.61)	.063
ICU length of stay				.96
0–2 days	72 (24.49)	73 (22.81)	145 (23.62)	
3–4 days	95 (32.31)	108 (33.75)	203 (33.06)	
5–7 days	63 (21.43)	69 (21.56)	132 (21.50)	
>7 days	64 (21.77)	70 (21.88)	134 (21.82)	
Died in ICU	42 (14.29)	50 (15.63)	92 (14.98)	.64

Copper Surfaces Reduce the Rate of Healthcare-Acquired Infections in the Intensive Care Unit

Cassandra D. Salgado, MD;¹ Kent A. Sepkowitz, MD;² Joseph F. John, MD;³ J. Robert Cantey, MD;¹ Hubert H. Attaway, MS;⁴ Katherine D. Freeman, DrPH;⁵ Peter A. Sharpe, MBA;⁶ Harold T. Michels, PhD;² Michael G. Schmidt, PhD⁴



Use of copper may select for Enterococcus with copper tolerance genes

these genes appear to be comediated with resistance to first line antibiotics

Prevalence of genes encoding Cu tolerance and epidemiological background

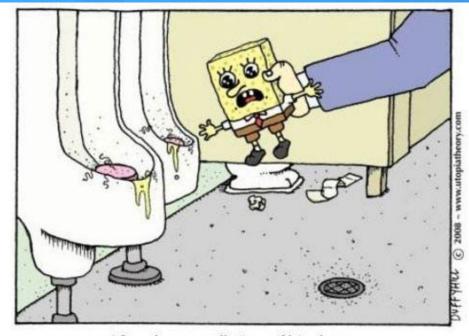
In this study, 348 E. faecium, 321 E. faecalis, 75 E. hirae, 29 E. gallinarum, 19 E. casseliflavus, 6 E. durans and 124 isolates that could

J Antimicrob Chemother 2014; **69**: 899–906 doi:10.1093/jac/dkt479 Advance Access publication 15 December 2013 Journal of Antimicrobial Chemotherapy

Co-transfer of resistance to high concentrations of copper and first-line antibiotics among *Enterococcus* from different origins (humans, animals, the environment and foods) and clonal lineages

Eduarda Silveira¹, Ana R. Freitas¹, Patrícia Antunes^{1,2}, Mariana Barros¹, Joana Campos¹, Teresa M. Coque³⁻⁵, Luísa Peixe¹ and Carla Novais^{1*}

¹REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; ²Faculdade de Ciências da Nutrição e Alimentação, Universidade do Porto, Porto, Portugal; ³Servicio de Microbiologia, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; ⁴Centro de Investigación Biomédica en Red de Epidemiologia y Salud Pública (CIBER-ESP), Madrid, Spain; ⁵Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain



the patient environment contributes to acquisition of ARO's

manual cleaning is important but oftentimes suboptimal

technologies that may supplement manual cleaning: HP vapor, UVC, antimicrobial surfaces

important questions: can increased disinfection of high touch surfaces decrease HAI? How often should it be done? Is bioburden reduction enough or is eradication necessary?

After the cancellation of his show, Sponge Bob was forced to take any job he could get...

Summary

- WGS may be the future of typing, improved discrimination
- Substantial genetic variability in MRSA, C. difficile points to sources we have yet to determine
- + No one method is sufficient to prevent HAIs
- + Ceiling for long-standing practices?
 - + impact of gowning and gloving policies
- + Emergence of decolonization as infection prevention
 - + Chlorhexidine bathing
 - + Pre-surgical decolonization

- Manual Cleaning isn't good enough
 - + ARO's stick around the patient environment
 - + the environment can transmit ARO's to HCW's
 - + Evidence for environmental hygiene is improving
 - + Technologies to supplement manual cleaning: HP vapor, UVC, antimicrobial surfaces

Marchetti, Rossiter J Med Econ 2013

- •Previous CDC estimate: \$28-45 billion in direct costs for HAI's in US hospitals
- •This study updates those estimates and added *Indirect* costs
- Total HAI societal costs\$96-147 billion annually

Table 1. Societal cost of hospital-acquired infections.

Category	Societal low	Societal high
Direct costs (Billions) Index hospitalization Professional fees index hospitalization Post-discharge outpatient Readmission post-index hospitalization Professional fees readmission Post-discharge diagnosed infection Sub-totals	\$24.8 \$4.9 \$0.2 \$3.4 \$0.7 \$0.3 \$34.3	\$53.9 \$13.2 \$0.2 \$4.0 \$1.0 \$1.7
Indirect costs Lost wages, incapacitation Lost future wages, premature death Sub-totals Total societal costs	\$2.5 \$59.1 \$61.6	\$3.9 \$68.7 \$72.6
Conintal cost of illness	 ቀባር *	Φ117*

Original article

Economic burden of healthcare-associated infection in US acute care hospitals: societal perspective

Albert Marchett

MedERA—Medical Education and Research Alliance, Linwood, NJ, USA, and UMDNJ—University of Medicine and Dentistry of New Jersey, Newark, NJ, USA

Richard Rossiter

MedERA—Medical Education and Research Alliance, Linwood, NJ, USA

- Dreaded "July effect"
- •Assessed effect of new trainees in July at a tertiary care academic hospital
- •Simple 3 month pre vs post July
- •Outcome: ?difference in HAI?
- •Found no difference in overall HAI's stop blaming the newbies!

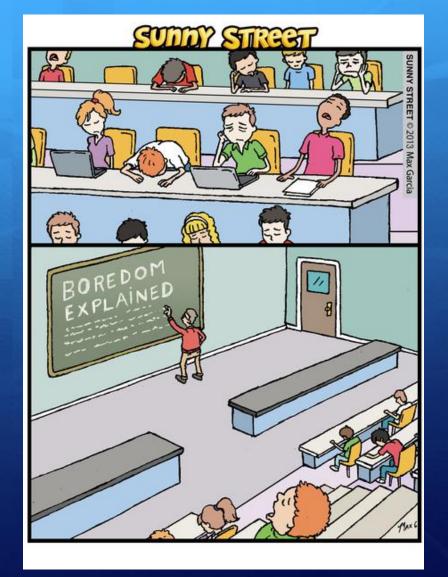
TABLE 1. Incidence of Selected and Overall Healthcare-Associated Infections (HAIs) for the Indicated Time Periods, 2010–2012

	Infection ra	ate (95% CI)
Infection	April–June	July-September
SSI	9.33 (8.10–10.69)	10.31 (9.02–11.73)
VAP	2.64 (1.85-3.65)	1.99 (1.29-2.94)
CLABSI	1.64 (1.34-1.98)	1.42 (1.14-1.73)
CAUTI	2.50 (2.06-3.01)	2.59 (2.14-3.11)
All HAIs	4.89 (4.58-5.23)	4.84 (4.52-5.16)

NOTE. CAUTI, catheter-related urinary tract infection; CI, confidence interval; CLABSI, central line–associated blood-stream infection; SSI, surgical site infection; VAP, ventilator-associated pneumonia.

July Effect: Impact of the Academic Year-End Changeover on the Incidence of Healthcare-Associated Infections

Lauren M. DiBiase, MS;¹ David J. Weber, MD, MPH;^{1,2} Emily E. Sickbert-Bennett, PhD;^{1,2} Clark Denniston, MD;³ William A. Rutala, PhD, MPH^{1,2}


Olson, J Econ Entomol 2013

- •Bed Bugs can survive below freezing temperatures
- •-16C x 8oh or -2oC x 48h is needed to achieve 100% kill

Thanks to Drs. E. Bryce, N. Rau, and E. Blondel-Hill, C. Lowe for their assistance

