



### Molecular Methods in Diagnostic Microbiology: Making the Great Discovery Greater?

#### Agatha Jassem, PhD

Senior Scientist, BCCDC Public Health Microbiology & Reference Lab Clinical Instructor, Pathology & Laboratory Medicine, UBC





### **Presentation Objectives**

Describe the role of molecular methods (nucleic acid tests) in diagnostic microbiology

- The past: initial impacts
- **The present**: strategies to reduce cost and workflow pressures
- Current limitations: laboratory & technological
- The future: advances & impacts





### **Diagnostic Microbiology**

- Initial diagnosis of illness
- Disease progression
- Response to therapy
- Screening of carriers
- Surveillance & outbreak investigation





### **Detection of Microbes**





PHSA Laboratories

A service of the Provincial Health Services Authority

### **Conventional Methods**

### Direct detection & characterization via morphological & biochemical methods





**PHSA Laboratories** 

A service of the Provincial Health Services Authority

### **Conventional Methods**

### Direct detection & characterization via morphological & biochemical methods





#### **PHSA Laboratories**

### Nucleic Acid Testing (NAT)

# Direct detection & characterization via molecular methods





PHSA Laboratories

A service of the Provincial Health Services Authority

Learn.Genetics University of Utah

### PCR and sequencing



Provincial Health Services Authority Province-wide solutions. Better health.

A service of the Provincial Health Services Authority

### Nucleic Acid Testing (NAT)

# Direct detection & characterization via molecular methods



A service of the Provincial Health Services Authority

rovince-wide solutions



BC Centre for Disease Control AN AGENCY OF THE PROVINCIAL HEALTH SERVICES AUTHORITY



### **NAT: The Past**





A service of the Provincial Health Services Authority

### Patient-centric Impact of NAT



Cat-scratch disease in immunocompetent person



Bacillary angiomatosis in immunocompromised person

Identification of pathogens associated with clinical syndromes: *Bartonella* spp by 16S rRNA gene



Relman et al. 1990. N Engl J Med. 323: 1573-80.

Dehio. 2005. Nature Reviews Micro. 3: 621-31

Provincial Health Services Authority Province-wide solutions. Better health.

PHSA Laboratories
A service of the Provincial Health Services Authority

### Public Health Impact of NAT

#### Identification of emerging pathogens: Sin Nombre virus using conserved hantavirus gene

#### 1993 outbreak of an unexplained pulmonary illness in "The Four Corners" (CDC)





Nichol et al. 1993. Science. 262:914-917.



#### **PHSA Laboratories**

A service of the Provincial Health Services Authority

### Impact of NAT on Infectious Diseases

Detection of organisms where microscopy and/or culture is not useful or preferred

- <u>Unculturable organisms</u>: Hepatitis C virus, EBV, HPV, Norovirus, *T. pallidum*, *M. pneumoniae,* Borrelia spp, Rickettsia spp... & many more
- <u>Stains and cultures have low sensitivity</u>: STIs caused by *N. gonorrhoeae*, *C. trachomatis*
- <u>Culture is hazardous</u>: Ebola virus, Hantavirus, *B. anthracis, Francisella* spp, dimorphic fungi



### Impact of NAT on Infectious Diseases

Detection of organisms where microscopy and/or culture is not useful or preferred

- <u>Quantification required</u>: HIV, CMV & EBV, hepatitis B & C viruses
- <u>Subtyping required\*</u>: Human papillomavirus, Hepatitis C, influenza, HIV, measles, shiga toxinproducing *E. coli*, *Campylobacter* spp, *C. difficile*

\*including for molecular epidemiology





### Impact of NAT on Infectious Diseases

Detection of organisms where microscopy and/or culture is not useful or preferred

- <u>Clinical rapid response required</u>: HSV/Enterovirus in CSF, *M. tuberculosis* (+resistance), influenza, pertussis, shiga toxin, malaria... & many more
- <u>Emerging pathogens rapid response required</u>: SARS/MERS-CoV, Ebola, measles, influenza, carbapenemase-producing organsims...





### Nucleic Acid Testing (NAT)

- Initial diagnosis of illness
- Disease progression
- Response to therapy
- Screening of carriers
- Surveillance & outbreak investigation





### Nucleic Acid Testing (NAT)

Increased sensitivity Decreased turn-around-time **Increased** applications **Increased demand BCCDC PHL: 22% increase in overall** expenditure over the last 8 years





A service of the Provincial Health Services Authority



BC Centre for Disease Control



### **NAT: The Present**

Provinceal Health Services Authority Province-wide solutions. Better health.



A service of the Provincial Health Services Authority

### Strategies to Improve Lab Efficiencies

- Pooled Specimen NAT
- Pathogen Panel NAT
- Automation of NAT





A service of the Provincial Health Services Authority

### **Pooled Specimen NAT**

#### A strategy to reduce the cost and labor of test



Useful in low prevalence settings
Decreases sensitivity of the test





### **Pooled Specimen NAT**

Has been used as a strategy for detection of

- Malaria (*Plasmodium* spp)
   surveillance; reduction of labor & costs by 95.5% (Hsiang *et al.* 2012. PLoS One 7:e29550)
- Acute HIV infection (currently at BCPHMRL)

   Targeted for higher risk populations (MSM)
   Cost savings from timely notification & care
   (Krajden *et al.* 2014. J Clin Virol. 61:132-7)

#### • Shiga toxin+ E. coli (validated at BCPHMRL)





## Shiga Toxin-Producing E. coli

Leading cause of bacterial enteric infections

- Common serotype: O157-H7
- >100 serotypes cause illness

#### **Stool culture is selective for O157**

 Infections attributed to non-O157 STEC may be more prevalent than those of O157

(Johnson *et al.* 2006. Clin Infect Dis 43:1587-95; CDC. 2013. MMWR. 62:283-7)









A service of the Provincial Health Services Authority

### Shiga Toxin-Producing E. coli



#### Recommendation for Identification of STEC by Clinical Laboratories

<u>All stools</u> submitted for testing from patients with acute community-acquired diarrhea (i.e., for detection of the enteric pathogens *Salmonella*, *Shigella*, and *Campylobacter*) should be cultured for O157 STEC on selective and differential agar. These stools should be simultaneously assayed for non-O157 STEC with a test that detects the Shiga toxins or the genes encoding these toxins. All O157 STEC isolates should be

#### = use culture and PCR for detection

Province-wide solutions. Better health.

**PHSA Laboratories** 

## Shiga Toxin-Producing E. coli

#### Expected positivity by PCR: 1–2% in North America

(Buchan *et al.* 2013. J Clin Microbiol 51:4001-7; Chui *et al.* 2011. J Clin Microbiol 49:4307-10; Lefterova *et al.* 2013. J Clin Microbiol 51:3000-5)

#### Culture and PCR for detection:

#### <u>Associated cost in personnel, equipment, and</u> reagents is a barrier for implementation

(Stigi et al. 2012. Emerg Infect Dis 18:477-9; Kiska et al. 2011. J Clin Microbiol 14:2394-7)





### Pooled NAT in detection of STEC

Pools of 10 enriched broths (n=30 pools, 1+ve/pool)

- Sensitivity of pooled PCR: 100%
- $\Delta$ Ct: 3.9 for stx<sub>1</sub>, 4.3 for stx<sub>2</sub>: change in limit of detection
  - LOD from ~8 × 10<sup>2</sup> to ~2 × 10<sup>4</sup> CFU/mI
  - Low positive specimens (>Ct 35) are <5% of positives

#### Cost and workflow analysis:

Cost-savings of 53-81% and time-savings of 1-3 hours for 90 specimens

#### Suitable for large-scale testing



### Pathogen Panel NAT

 Useful in patients with nonspecific symptoms that can be caused by various pathogens

Respiratory

Influenza A Influenza A H1 Influenza A H3 Influenza A 2009 H1N1 Influenza B Respiratory Syncytial V A Respiratory Syncytial V B Parainfluenza 1 Parainfluenza 2 Parainfluenza 3 Parainfluenza 4 Human Bocavirus Human Metapnuemovirus Rhinovirus/Enterovirus Adenovirus Coronavirus HKU1 Coronavirus NL63 Coronavirus OC43 Coronavirus 229E C. Pneumoniae L. Pneumophila M. Pneumonaie B. pertussis

#### Gastrointestinal

Campylobacter (jejuni, coli and upsaliensis) Clostridium difficile Plesiomonas shigelloides Salmonella Yersinia enterocolitica Vibrio (parahaemolyticus, vulnificus and cholerae) Enteroaggregative E. coli (EAEC) Enteropathogenic E. coli (EPEC) Enterotoxigenic E. coli (ETEC) Shiga-like toxin-producing E. coli (STEC) stx1/stx2 Shigella/Enteroinvasive E. coli (EIEC) Cryptosporidium Cyclospora cayetanensis Entamoeba histolytica Giardia lamblia Adenovirus F40/41 Astrovirus Norovirus GI/GII Rotavirus A Sapovirus (I, II, IV and V)

#### Bloodstream

Enterococcus Listeria monocytogenes Staphylococcus aureus Streptococcus (agalactiae, pneumoniae, pyogenes) Acinetobacter baumannii Haemophilus influenzae Neisseria meningitidis Pseudomonas aeruginosa Enterobacter cloacae complex Escherichia coli Klebsiella oxytoca Klebsiella pneumoniae Proteus Serratia marcescens Candida (albicans, glabrata, krusei Parapsilosis, tropicalis) mecA - methicillin resistance vanA/B - vancomycin resistance **KPC** - carbapenem resistance

#### CNS

Escherichia coli K1 Haemophilus influenzae Listeria monocytogenes Neisseria meningitidis Streptococcus agalactiae Streptococcus pneumoniae Cytomegalovirus (CMV) Enterovirus Epstein-Barr virus (EBV) Herpes simplex virus 1 (HSV-1) Herpes simplex virus 2 (HSV-2) Human herpesvirus 6 (HHV-6) Human parechovirus Varicella zoster virus (VZV) Cryptococcus gattii Cryptococcus neoformans

\*in development FilmArray

### Pathogen Panel NAT

- Useful in patients with nonspecific symptoms that can be caused by various pathogens
  - -Can impact patient care
  - -Simplify physician ordering
  - -Limited understanding of co-infection
  - -May not detect emerging pathogens
  - -High capitol and per test cost





#### Lab considerations: One size does not fit all

Tests and algorithms consider patient population (cost-effectiveness, clinical benefits, pretest probability)

| Test      | Complexity | Labor | TAT*   | Throughput | Cost |
|-----------|------------|-------|--------|------------|------|
| Filmarray | Low        | Low   | 1 hr   | Low        | High |
| Luminex   | Mod        | Mod   | 6-8 hr | High       | Mod  |
| In-house  | High       | High  | 4 hr   | High       | Low  |

\*TAT affected by specimen batching



**PHSA** Laboratories

### **Respiratory Panel NAT Impacts**

• <u>Inpatients</u>: enhanced & rapid detection associated with reduced hospital stays/costs and antibiotic use

(Rogers *et al.* 2015. Arch Pathol Lab Med 139:636-41; Gelfer *et al.* 2015. Diagn Microbiol Infect Dis Epub; Mahony *et al.* 2009. J Clin Microbiol 47:2812-7)

 <u>Outpatients</u>: initial reduction in antibiotic prescription rate is not sustained on follow-up

(Brittain-Long et al. 2011. BMC Med 9:44)

 <u>Children & immunocompromised patients</u>: coinfection associated with increased disease severity?

(Vallieres & Renaud. 2013. Diagn Microbiol Infect Dis. 76(3):255-61; Asner et al. 2015. Clin Microbial Infect 21:264.e1-6)





BCCDC PHL: initial screen with Flu A/B & RSV PCR

- If negative, perform Luminex panel PCR
- If positive & patient meets criteria\*, perform Luminex pathogen panel PCR
- Luminex panel PCR performed twice/week

#### In-house PCR cost: ~\$8/test Luminex panel cost: ~\$50/test

\*Criteria: <5 years old, BMT, ICU, outbreak case, surveillance... Luminex panel currently used detects virus pathogens





#### At BCCDC PHL:

| Year    | No. Flu/RSV<br>PCR | No. Luminex<br>Panel | Total No. | Cost      |
|---------|--------------------|----------------------|-----------|-----------|
| 2010/11 | 5590               | 5528                 | 11,118    | \$276,400 |
| 2011/12 | 5216               | 5196                 | 10,412    | \$259,800 |
| 2012/13 | 8802               | 4108                 | 12,910    | \$205,400 |
| 2013/14 | 10807              | 2899                 | 13,706    | \$144,950 |
| 2014/15 | 13338              | 3828                 | 17,166    | \$194,400 |

Raw data collected by LUMNX code and resulting, may not include surveillance specimens Cost is an approximation



**PHSA Laboratories** 

| Influenza A                   |
|-------------------------------|
| Influenza A H1                |
| Influenza A H3                |
| Influenza A 2009 HIN1         |
| Influenza B                   |
| Respiratory Syncytial Virus A |
| Respiratory Syncytial Virus B |
| Parainfluenza 1               |
| Parainfluenza 2               |
| Parainfluenza 3               |
| Parainfluenza 4               |
| Human Bocavirus               |
| Human Metapneumovirus         |
| Rhinovirus/Enterovirus        |
| Adenovirus                    |
| Coronavirus HKU1              |
| Coronavirus NL63              |
| Coronavirus OC43              |
| Coronavirus 229E              |

#### BCCDC PHL: **bacterial targets** to complicate algorithm in the future? 2015 validation





**PHSA Laboratories** 

### Automation of NAT

- Useful in high-volume scenarios & for point-of-care testing
  - Decrease hands-on time
  - Can provide more consistency
  - Require large capital investment







### Automation of NAT

#### For high-throughput

- N. gonorrhoeae & C. trachomatis
- HIV, HCV, HPV, CMV/EBV
- Automation of NAT steps (liquid handlers)

#### For point-of-care

• C. difficile, M. tuberculosis, resistance genes

# Some performed outside of acute-care setting & require specimen batching



A service of the Provincial Health Services Authority







BC Centre for Disease Control



### **NAT Limitations**

Provinceal Health Services Authority Province-wide solutions. Better health.



A service of the Provincial Health Services Authority

### Laboratory & Clinical Considerations

- Capital cost & cost per test
- Turn-around-time if batching
- Requirement of technical expertise
- Target specificity limits broad detection
- Increased sensitivity effects on interpretation





### The Technological GAP

Novel NAT techniques consider:

- Evolving & emerging pathogens
- Mechanisms of resistance
- Molecular epidemiology (outbreaks)







BC Centre for Disease Control



### **NAT: The Future**

Provinceal Health Services Authority Province-wide solutions. Better health.



A service of the Provincial Health Services Authority

### Patient-centric Impact of NAT



#### Metagenomic analysis found an association between a novel bornavirus & the three fatal human CNS infections

Hoffman et al. 2015. N Engl J Med 9:154-62.





A service of the Provincial Health Services Authority

### Public Health Impact of NAT

Gardy JL, Johnston JC, Ho Sui SJ, Cook VJ, Shah L, Brodkin E, Rempel S, Moore R, Zhao Y, Holt R, Varhol R, Birol I, Lem M, Sharma MK, Elwood K, Jones SJ, Brinkman FS, Brunham RC, Tang P. **2011**. N Engl J Med. 364:730-9.

## Whole-genome sequencing and social-network analysis of a tuberculosis outbreak

Prystajecky N, Tsui CK, Hsiao WW, Uyaguari-Diaz MI, Ho J, Tang P, Isaac-Renton J. **2015.** Appl Environ Microbiol. 81:4827-34.

#### Giardia spp. Are Commonly Found in Mixed Assemblages in Surface Water, as Revealed by Molecular and Whole-Genome Characterization

Gardy JL, Naus M, Amlani A, Chung W, Kim H, Tan M, Severini A, Krajden M, Puddicombe D, Sahni V, Hayden AS, Gustafson R, Henry B, Tang P. **2015**. J Infect Dis. pii: jiv271.

Whole-Genome Sequencing of Measles Virus Genotypes H1 and D8 During Outbreaks of Infection Following the 2010 Olympic Winter Games Reveals Viral Transmission Routes

Better health.

### Addressing Current NAT Limitations

- Molecular methods will continue to be a leading area of growth in lab medicine
  - Novel technologies & applications
  - Less complex & costly = more accessible
- Clinical & financial outcome data will be needed to justify use of testing





### Acknowledgements

#### **BCCDC Public Health Laboratory**

Environmental Microbiology & Bacteriology/Mycology Frank Chou, Cathevine Yang Matthew Croxen, Natalie Prystajecky, Judy Isaac-Renton Loretta Janz, Ana Paccagnella, Linda Hoang FoodNet Canada (PHAC)

#### **Virology Services**

Ron Chow, Kingsley Gunadasa, Alan McNabb Yin Chang, Mel Krajden

