

The CDC big three; challenges from the laboratory perspective

Todd F Hatchette MD FRCPC AMMI Annual Conference 2015 Charlottetown, PEI

Disclosures

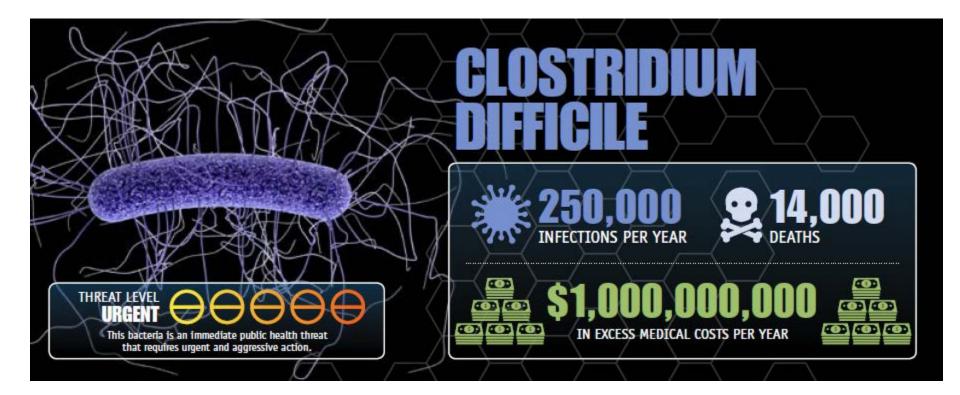
- PHAC working groups
- Department of Health and Wellness
- Collaborative research grant with GSK for the SOS network and influenza vaccine effectiveness

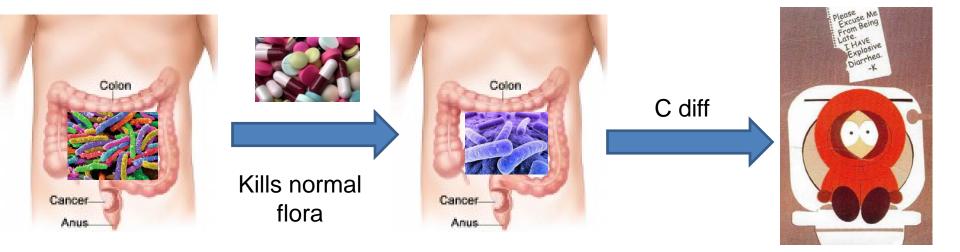
Outline

- Describe the capabilities and challenges of novel tools used for the detection of carbapenemase-producing organisms.
- Contrast Clostridium difficile testing algorithms.
 - Are labs using the best strategy?
- Describe impact of current laboratory practices as it relates to GC

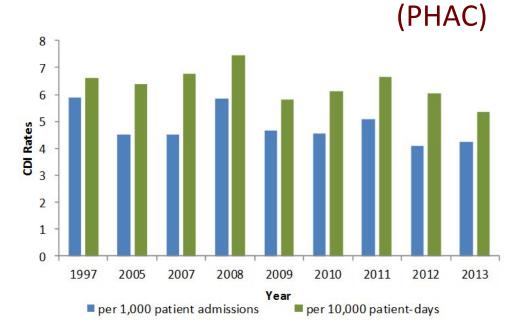
ANTIBIOTIC RESISTANCE THREATS in the United States, 2013

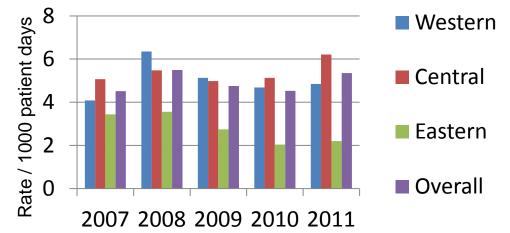
Call to Action


"is a snapshot of the complex problem of antibiotic resistance today and the potentially catastrophic consequences of inaction."

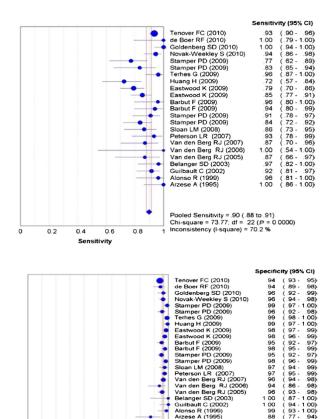

- Urgent Threats
 - Significant risk
 - Limited treatment options
- Serious Threats
 - Reduced incidence or more treatment options
- Concerning Threats

Urgent Threats


Clostridium difficile


Carbapenem-resistant Enterobacteriaceae Drug-resistant *Neisseria gonorrhoeae*

C.Diff in Canada


Ideal Assay

- Want a rapid, accurate inexpensive test
- Tests of limited sensitivity lead to false negatives and potential for further spread and morbidity
- Tests of low specificity lad to unnecessary isolation (or cohorting that could increase risk of exposure) and treatment
- No Single test fits these requirements

Assay	Pros	Cons	sens	Spec	Cost
Immunoasssay for Toxin A / B	 Rapid Easy to use	Lacks sensitivity	69-99% (as low as 38%)	92 -100%	+
glucose dehydrogenase	Very high NPVbatchable	Not specificPositive needs confirmation	88 – 100%	83 -100%	+
Cell Culture Cytotoxic assay	 Identifies presence of the toxin 	 Takes 48 hrs for a negative Requires tissue culture 	70-100	90-100	++
Toxigenic culture	 "gold standard" 	 Test takes upto 5 days Cumbersome 	90-100	98-100	+++
NAAT	Can be rapidVery sensitive	 Expensive Does not differentiate colonization 	88-91%	96-97%	++++

Plancehe et al., 2008 Lancet Infect Dis 8:777 ; Shetty et al., JI of Hosp Infecti (2011) 1e6 Alfa, and Sepehri. Can J Infect Dis Med Microbiol 2013;24(2):89-92. Deshpande et al., 2011. Clin Infect Dis 53:e81-e90

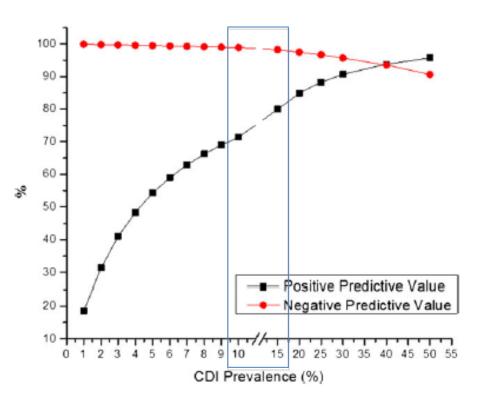
Performance of NAAT a Systemic Review (Deshpande et al., 2011. Clin Infect Dis 53:e81-e90)

0.2

0.4

Specificity

0.6


0.8

Pooled Specificity = .96 (.96 to .97)

Inconsistency (I-square) = 76.9 %

Chi-square = 95 04, df = 22 (P = 0.0000)

- Pooled sens 90%
- Pooled spec 96%

Multi-Step Algorithms

- Options:
- NAAT alone
 - How do you confirm
 - What is the batch size
- Screen with GDH
 - excellent NPV and EIA can be run daily
- But requires confirmation
 - Confirm with Tox A/B EIA
 - confirm with CCCNA
 - Confirm with NAAT

Clostridium difficile testing of non-formed stool: Algorithm 1 Screening test: GDH antigen GDH antigen (+) GDH antigen (-) Toxin A & B test positive negative indeterminant (if applicable) CTN assav Report as positive Report as negative for C. difficile toxin for C. difficile toxin positive negative -

Alfa, and Sepehri. Can J Infect Dis Med Microbiol 2013;24(2):89-92.

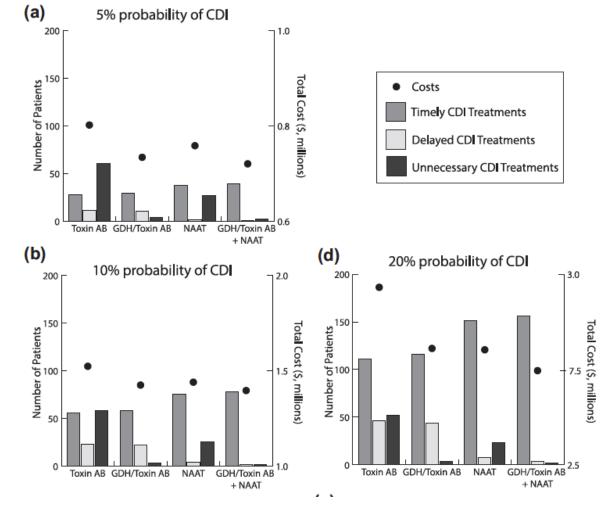
How do Multi-step Algorithms Perform?

- Novak-Weekley et al, J Clin Microbiol 2010 48:889-893
 - Prospective study 432 stool samples (72 pos prevalence 16.7%)

TABLE 1. Summary of algorithm versus stand-alone testing options compared to direct/enriched toxigenic culture

Damagasard	Test(s)						
Parameter ²	EIA only	GDH + EIA	GDH + EIA + cytotoxin ^b	GDH + Xpert ^c	Xpert only ^d		
No. of specimens	432	432	431	432	428		
Sensitivity	58.3 (42/72)	55.6 (40/72)	83.1 (59/71)	86.1 (62/72)	94.4% (68/72)		
Specificity	94.7 (341/360)	98.3 (354/360)	96.7 (348/360)	97.8 (352/360)	96.3 (343/356)		
Accuracy	00.7 (303/432)	91.2 (394/432)	94.4 (407/431)	95.8 (414/432)	96.0 (411/420)		
PPV	68.9 (42/61)	87.0 (40/46)	83.1 (59/71)	88.6 (62/70)	84.0 (68/81)		
NPV	91.9 (341/371)	91.7 (354/386)	96.7 (348/360)	97.2 (352/362)	98.8 (343/347)		

- Hart et al., Eur J Clin Microbiol Infect Dis (2014) 33:1555–1564
 - Pediatrics n=150 (36% prevalence)


			Table 2 Statistica				
Test	Sensitivity (%)	Specificity (%)	Test	Sensitivity (%)	Specificity (%)	PPV (%)	NPV (%)
GDH	87	97	GDH + AB	28	97	81	75
Toxin A/B	29	100	GDH + Illumigen	85	100	100	94
Illumigene	89	100	GDH + GeneOhn	83	99	97	93
GeneOhm	89	99	CCFA + CCNA	30	100	100	76
CCNA	33	100				- • •	

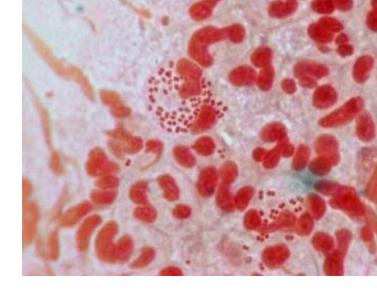
Which is Cost Effective

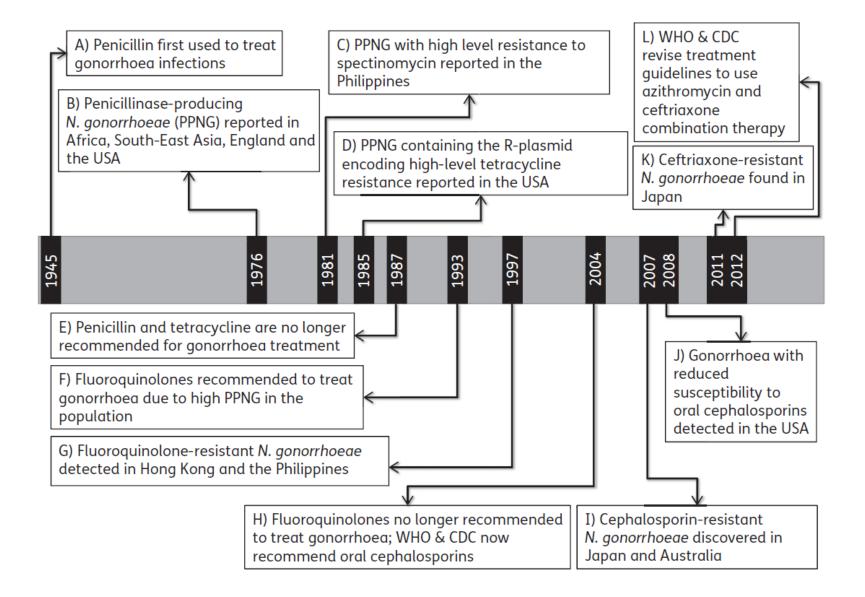
- Bartsch et al., 2015 (Clin Microbiol Infec 21:77e)
 - Modeled the cost of different algorithms
 - Tox A/B
 - GDH + Tox A/B
 - NAAT
 - GDH/TOX A/B + NAAT
 - Factored in isolation costs, treatment delays, inappropriate treatment, potential for secondary cases

GDH-Tox A/B + NAAT is Cost Effective

 GDH/ToxA/B + NAAT also had fewest unnecessary bed delays

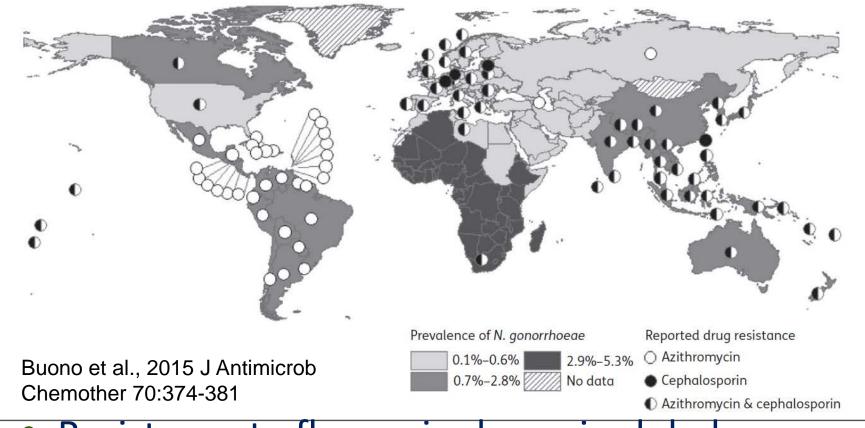
What about antimicrobial resistance?


GONNORHEA

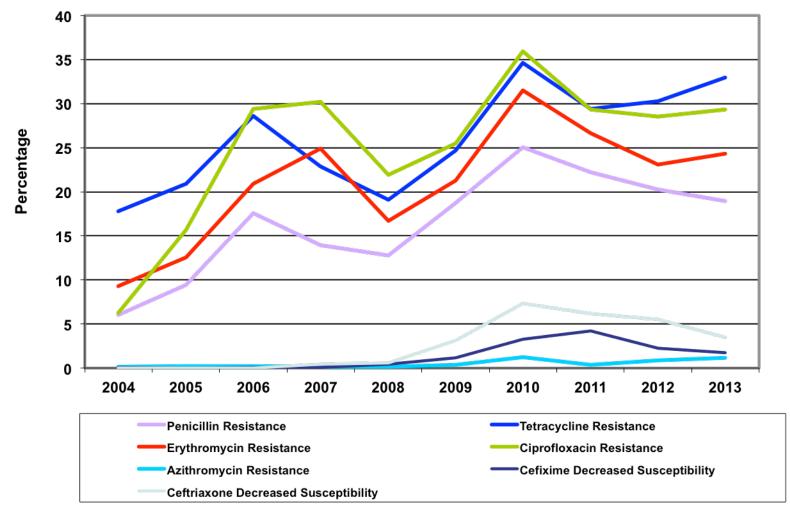

REVEAL 🌔 REAL

MALE

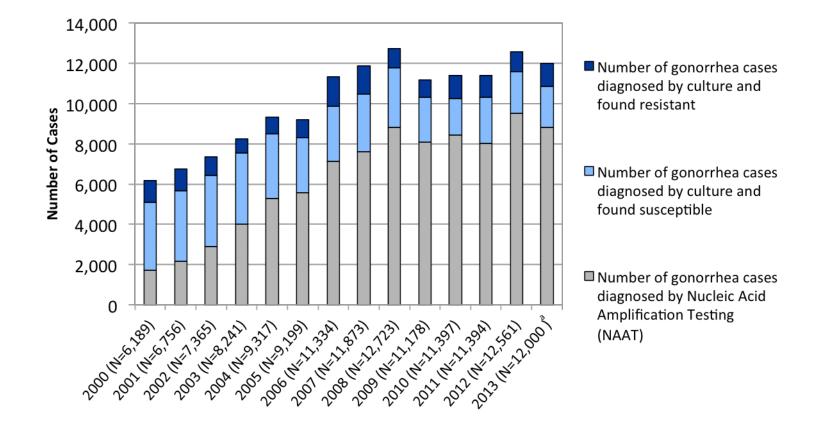
FEMALE



Buono et al., 2015 J Antimicrob Chemother 70:374-381


- Selection Pressure allows for Horizontal gene transfer form non GC Neisseria particularly in the throat
- WHO recommends only drugs with >95% efficacy be used as first line rx
- Ideally we could have individualized treatment to ensure narrowest spectrum used

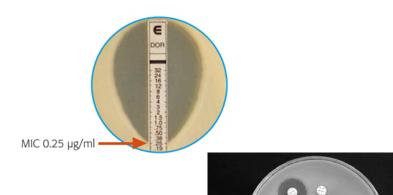
Resistance to Azithromycin and Cephalosporins is a global Problem


Resistance to fluorquinolones is global

GC Resistance Rates in Canada are Increasing

(National Surveillance of Antimicrobial Susceptibilities of Neisseria gonorrhoeae Source: Irene Martin NML Annual Summary 2013)

Canadian Data Molecular testing more common



Year (Number of cases of gonorrhea reported)

Source: Irene Martin NML (National Surveillance of Antimicrobial Susceptibilities of Neisseria gonorrhoeae Annual Summary 2013)

Resistance Detection Methods

- Agar dilution methods are CLSI recommended standard
 - Time consuming
 - Labor intensive
- E test / disc diffusion have been used

Images:

•Prajna Sharma and Vishwanath 2012

<u>www.biomerieux-diagnostics.com/etest</u>
wikipedia

Molecular identification of resistance

- No commercially available method
- In house methods are available
 - Quinolone gyrA and parC
 - Azithromycin 23s rRNA and mtrR mutations
 - Cephalosporin mosaic penA gene

Challenge

- Rapid evolution
- NAAT requires a known target
- Acquisition of plasmid and chromosomally mediated resistance
- Variability between penA alleles can lead to different MICs
- Wont pick up "unknown" mechanisms like phenotypic testing
- Mechanisms are shared with commensal organisms

Challenges

Multiplexing is possible but not all mechanisms are well characterized

NAAT Good

- TEM-1 [penicillin]
- Tet(M) [tetracycline]
- parC/gyrA [quinolone]
- mtrR [azithromycin]

NAAT not so good

- Cephalosporins
 - penA high sequence variability
- Azithromycin
 - 23SrRNA allele availability

Data Starting to Emerge for NAAT from Residual Specimens

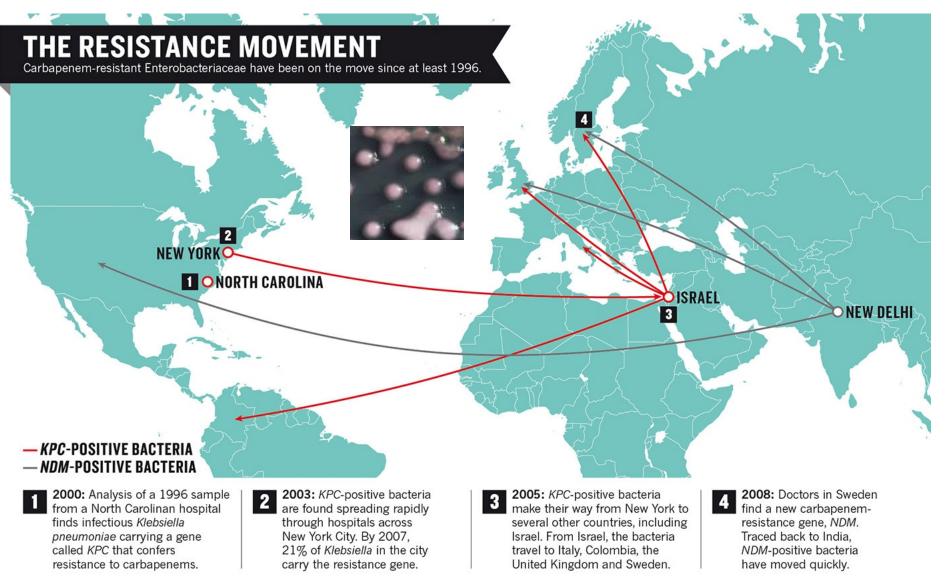
- Nicol et al., 2015 (Sex Transm Infect 91:91-93)
 - Three real time assays to detect gyrA, PPNG, and sequence for mosaic penA on residual specimen from Cobas 4800 CT/GC assay
 - 94% of specimens had enough DNA for amplification

Culture Based Surveillance

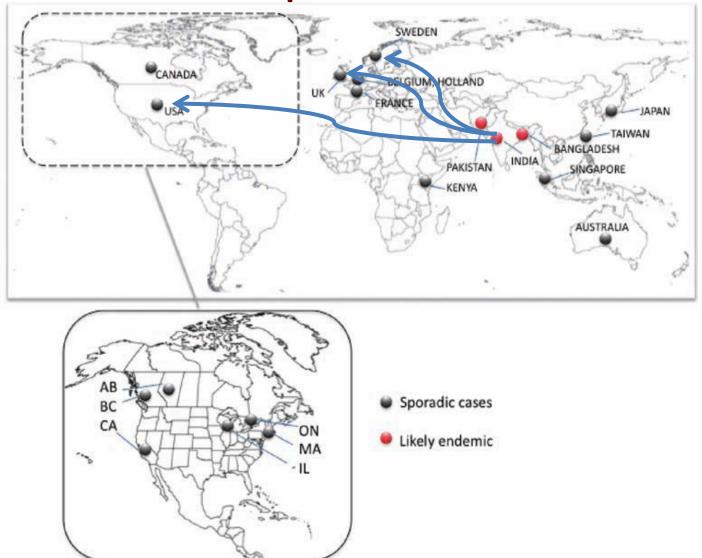
Canada - Enhanced surveillance of antimicrobialresistant gonorrhea program (ESAG)

- NS has 3 clinics and callbacks,
- MB has 5 engaged service
- AB has 2 STI clinics (Edmonton and Calgary)
- Other P/Ts are showing interest but not fully participating as yet.

US - Gonoccoccal Isolate Surveillance Project (GISP) 26 sites



Latest Canadian Data



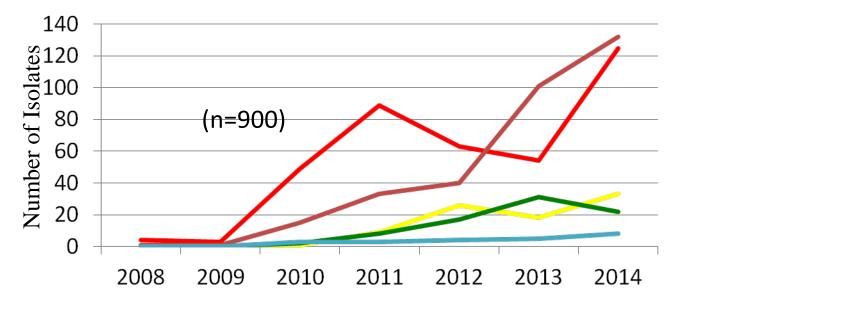
Global Spread

MCKENNA, Nature, 2013

Carbepenem Resistance- Global Spread

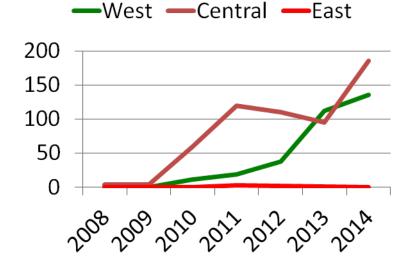
CRE

Variability in Mechanisms


1. A beta lactamase with a Porin mutation

2. Specific Carbepenamase enzymes

Enzyme Class / Characteristics	Different Types
Class A beta lactamase enzymes •Hydrolyze all beta lactams •Inhibited by boronic acid and partially by calvulanic acid	KPC, SME , IMI, NMC, GES
Class B beta lactamase enzymes •Highest carbapenemase activity •Generally only spare monbactam •Not inhibited by BL inhibitors •Required Zinc	Often named by place of origin NDM, IMP, VIM, GIM, SPM, SIM
Class D beta lactamase enzymes •Spares ceftazidime •Often require another enzyme (ESBL) for complete resistance	OXA-48 ; OXA-181 Nordman et al., 2012 Clin Microbiol Infect 18: 432-438


CPE in Canada: CPHLN Data

-KPC -NDM -OXA-48 -SME -Other

Year

CRE Detection

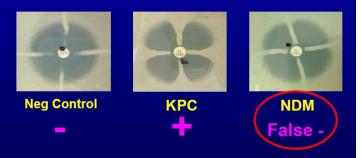
 Automated systems may not always be able to detect CRE MIC (mg/L)

	Imipenem	Meropenem	Ertapenem	
KPC	0.5 to >32	0.5 to >32	0.5 to >32	
IMP/VIM/NDM	0.5 to >32	0.5 to >64	0.38 to >32	
OXA-48/OXA-181	0.25 to 64	0.38 to 64	0.38 to >32	

CLSI have lowered breakpoints for better

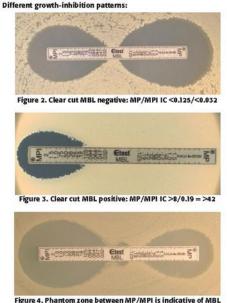
detection		CLSI	CLSI		EUCAST	
Good Candidate		S (≤)	R (≥)	S (≤)	R (>)	
May lack specificity	lmipenem Meropenem		4 4	2 2	8 8	
specificity	Ertapenem	0.5	2	0.5		
	Doripenem	I	4	2	8	

Is Confirmation Necessary? It Depends

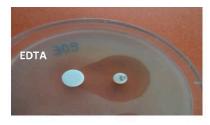

- CLSI does not recommend confirmation
 - Breakpoints all that is necessary for treatment decisions
 - But not a lot of treatment data out there
 - Some carbapenemases are susceptible or intermediate to carbapenems (OXAs)
 - How do you screen for theses
 - Only necessary for epidemiology and infection control reasons

The Ideal System

- Rapid (same day results)
- Sensitive and Specific
- Easy to perform
- Easy to interpret results
- Identify the different resistance mechanisms
- Identify the different genetic variants
- In expensive


CRE Confirmation

- Phenotypic tests None has 100% sensitivity or specificty
- Not good for OXA types
- Modified Hodge Test
 - Good for KPC and OXA less for NDM
 - Lacks specificity
 - Time consuming
 - subjective



Source: Janet Hindlre CLSI webinar update Feb 2015

- Addition of inhibitors
- EDTA / boronic acid

www.biomerieuxdiagnostics.com

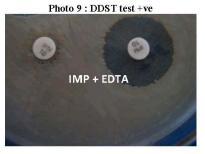
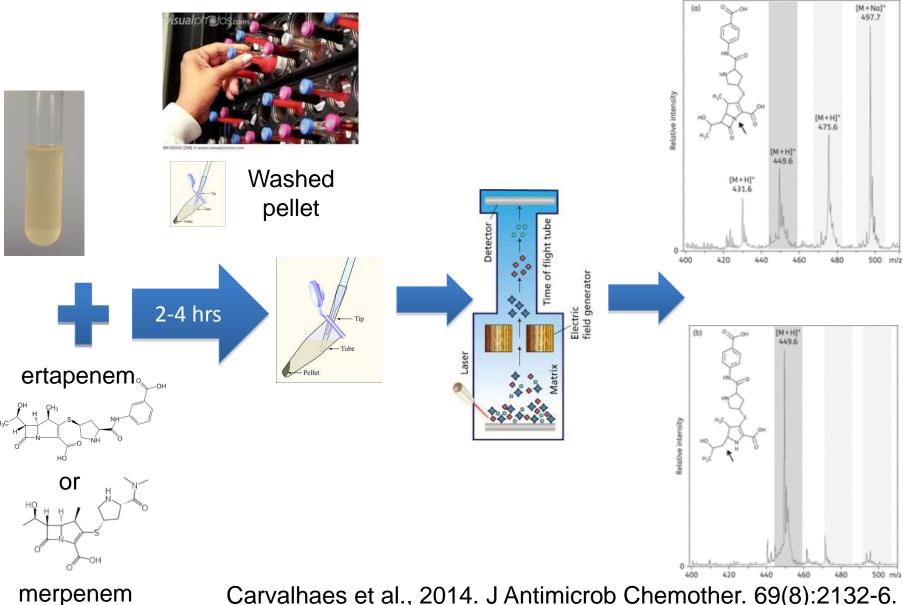


Photo 10 : Disc potentiation test +ve Basak and Monaliwww.intechopen.com/books/t rends-in-infectious-diseases

CARBA NP Test

- Mix suspect colony
- decrease in pH from hydrolysis of carbapenem

phenol red indicator



- Reagent must be fresh and takes time to prepare
- False negative for OXA
- Can give invalid results (subjective)

Source: Janet Hindlre CLSI webinar update Feb 2015

Source: Janet Hindlre CLSI webinar update Feb 2015

MALDI-TOF Identification of CRE

Carvalhaes et al., 2014. J Antimicrob Chemother. 69(8):2132-6.

MALDI-TOF Identification of CRE

- Carvalhaes et al.., 2014. J Antimicrob Chemother 69: 2132-2136
 - Direct detection of CRE from 100 randomly selected blood cultures
 - 21 isolates were CRE
 - All KPCs and one SM1 detected after 4 hours of incubation
 - 3/11 OXA required testing of bacterial colonies in detect carbapenemase activity
- Papagiannitsis et al 2015 J Clin Microbiol. 2015 Feb 18.
 - Addition of NH4HCO3 improved detection of OXA-48

- MALDI TOF
 - Can detect CRE independent of the enzyme produced, including novel enzymes
 - rapid
 - Requires molecular to characterize

Molecular Detection (NAAT)

- Biofire (FDA approved)
 - KPC
- Nanosphere (FDA approved) ۲
 - KPC, NDM, OXA, IMP, VIM
- NucliSENS EasyQ VKPC ۲
- Cepheid
 - KPC, NDM, OXA-48, IMP-1, VIM
- **BD** Max
 - KPC, NDM, OXA-48
- **Check-Points**
 - KPC, NDM, OXA-48, IMP, VIM
- Amplex Hyperplex Superbug ID
 - all variants of VIM, IMP, KPC, OXA-48 NDM-1

- Expensive
- **Requires molecular** expertise
- Sensitivity dependant on amount of DNA
 - may require growth first
- Need to target the gene

Source: Janet Hindlre CLSI webinar update Feb 2015

CRE Screening

- Lots of questions that depend on local epidemiology
 - Who, how often etc
- Stools/rectal swabs most common specimen
- None will detect the type of carbapeneamase

- Broth enrichment step may increase KPC detection (delays TAT)
- Direct to screening media
 - CRE specific

Dark pink to reddish

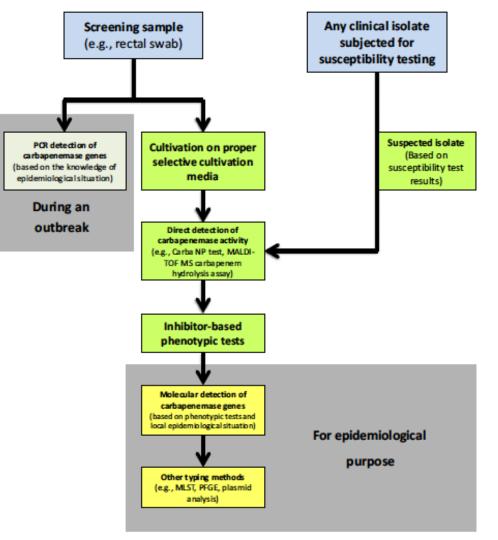
www.chromagar.com/clinicalmicrobiology-chromagar-kpcfocus-on-kpc-resistance-32.html (lebsiella, Enterobacter, itrobacter CarbapenemR

• *

Metallic blue

ESBL surrogate screening

E.coli CarbapenemR


• Next gen / whole genome sequencing

- Microarray
- MALDI ToF MS
 - Detect degradation products

Methods of Detection

	Modified Hodge Test	Carba NP	Molecular Detection	MALDI-TOF
Strengths	Relatively simple	rapid	Determines type of carbapenemase	Rapid Inexpensive Detects variety of MBL
Weaknesses	 Can be subjective False positives due to other mechanisms (ESBL or AMPC + porin mutation) Some false negatives (NDM – can add zinc) 	 Can give invalid results (subjective) Reagent preparation takes time False negative for OXA 	 Expensive Requires molecular expertise Need to target the gene (if it is not included it will not be detected) 	 Generate own spectral library Requires molecular differentiation of types of resistance

Potential Algorithm

Hrabak et al., 2014 Clin Micrbiol Infec 20:839-853

Conclusion

- Resistance is a problem
- Many different options for detecting resistance
- Must be tailored to your local context

Questions

